HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Reduction of senescent fibro-adipogenic progenitors in progeria-aged muscle by senolytics rescues the function of muscle stem cells.

AbstractBACKGROUND:
Fibro-adipogenic progenitors (FAPs) in the muscles have been found to interact closely with muscle progenitor/stem cells (MPCs) and facilitate muscle regeneration at normal conditions. However, it is not clear how FAPs may interact with MPCs in aged muscles. Senolytics have been demonstrated to selectively eliminate senescent cells and generate therapeutic benefits on ageing and multiple age-related disease models.
METHODS:
By studying the muscles and primary cells of age matched WT mice and Zmpste24-/- (Z24-/- ) mice, an accelerated ageing model for Hutchinson-Gilford progeria syndrome (HGPS), we examined the interaction between FAPs and MPCs in progeria-aged muscle, and the potential effect of senolytic drug fisetin in removing senescent FAPs and improving the function of MPCs.
RESULTS:
We observed that, compared with muscles of WT mice, muscles of Z24-/- mice contained a significantly increased number of FAPs (2.4-fold; n > =6, P < 0.05) and decreased number of MPCs (2.8-fold; n > =6, P < 0.05). FAPs isolated from Z24-/- muscle contained about 44% SA-β-gal+ senescent cells, in contrast to about 3.5% senescent cells in FAPs isolated from WT muscle (n > =6, P < 0.001). The co-culture of Z24-/- FAPs with WT MPCs resulted in impaired proliferation and myogenesis potential of WT MPCs, with the number of BrdU positive proliferative cells being reduced for 3.3 times (n > =6, P < 0.001) and the number of myosin heavy chain (MHC)-positive myotubes being reduced for 4.5 times (n > =6, P < 0.001). The treatment of the in vitro co-culture system of Z24-/- FAPs and WT MPCs with the senolytic drug fisetin led to increased apoptosis of Z24-/- FAPs (14.5-fold; n > =6, P < 0.001) and rescued the impaired function of MPCs by increasing the number of MHC-positive myotubes for 3.1 times (n > =6, P < 0.001). Treatment of Z24-/- mice with fisetin in vivo was effective in reducing the number of senescent FAPs (2.2-fold, n > =6, P < 0.05) and restoring the number of muscle stem cells (2.6-fold, n > =6, P < 0.05), leading to improved muscle pathology in Z24-/- mice.
CONCLUSIONS:
These results indicate that the application of senolytics in the progeria-aged muscles can be an efficient strategy to remove senescent cells, including senescent FAPs, which results in improved function of muscle progenitor/stem cells. The senescent FAPs can be a potential novel target for therapeutic treatment of progeria ageing related muscle diseases.
AuthorsLei Liu, Xianlin Yue, Zewei Sun, William S Hambright, Jianming Wei, Ying Li, Polina Matre, Yan Cui, Zhihui Wang, George Rodney, Johnny Huard, Paul D Robbins, Xiaodong Mu
JournalJournal of cachexia, sarcopenia and muscle (J Cachexia Sarcopenia Muscle) Vol. 13 Issue 6 Pg. 3137-3148 (12 2022) ISSN: 2190-6009 [Electronic] Germany
PMID36218080 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Copyright© 2022 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders.
Chemical References
  • Senotherapeutics
Topics
  • Mice
  • Animals
  • Progeria (drug therapy)
  • Senotherapeutics
  • Adipogenesis
  • Satellite Cells, Skeletal Muscle
  • Muscle Fibers, Skeletal

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: