HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Focal adhesion kinase inhibitor BI 853520 inhibits cell proliferation, migration and EMT process through PI3K/AKT/mTOR signaling pathway in ovarian cancer.

Abstract
Focal adhesion kinase (FAK) activation has been reported to be associated with cell progression and metastasis in a wide variety of cancer cells. Target treatment by inhibiting FAK has achieved remarkable effects in several cancers, but the effect in ovarian cancer has not been reported. In this study, we determined the role and the underlying molecular mechanism of BI853520, a novel small chemical FAK inhibitor against ovarian cancer. Results show that phosphorylated FAK tyrosine 397 (p-FAK Y397) is highly expressed in ovarian cancer tumor tissues and cell lines (SKOV3 and OVCAR3). BI853520 treatment greatly suppresses cell proliferation, viability, migration, invasion, decreases anchorage-independent growth and motility in vitro. Besides, treatment with BI853520 increases biologic effects following combination with chemotherapy in ovarian cancer cell lines. In addition, BI853520 suppresses EMT in ovarian cancer cell lines. Mechanically, BI853520 treatment downregulates the activation of PI3K/AKT/mTOR signal pathway. Finally, mice model experiments confirm BI853520 treatment dramatically reduces tumor growth in vivo and suppresses the activation of PI3K/AKT/mTOR signal pathway. Taken together, our findings demonstrate that focal adhesion kinase inhibitor BI853520 inhibits cell proliferation, migration, invasion and EMT process through PI3K/AKT/mTOR signaling pathway in ovarian cancer, and BI853520 can offer a preclinical rationale for targeting repression of FAK in ovarian cancer.
AuthorsHong Li, Yizhi Gao, Chenchen Ren
JournalDiscover. Oncology (Discov Oncol) Vol. 12 Issue 1 Pg. 29 (Aug 30 2021) ISSN: 2730-6011 [Electronic] United States
PMID35201437 (Publication Type: Journal Article)
Copyright© 2021. The Author(s).

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: