HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD.

AbstractPurpose:
The purpose of this study was to evaluate the feasibility of assessing quantitative longitudinal fluid dynamics and total retinal fluid indices (TRFIs) with higher-order optical coherence tomography (OCT) for neovascular age-related macular degeneration (nAMD).
Methods:
A post hoc image analysis study was performed using the phase II OSPREY clinical trial comparing brolucizumab and aflibercept in nAMD. Higher-order OCT analysis using a machine learning-enabled fluid feature extraction platform was used to segment intraretinal fluid (IRF) and subretinal fluid (SRF) volumetric components. TRFI, the proportion of fluid volume against total retinal volume, was calculated. Longitudinal fluid metrics were evaluated for the following groups: all subjects (i.e. treatment agnostic), brolucizumab, and aflibercept.
Results:
Mean IRF and SRF volumes were significantly reduced from baseline at each timepoint for all groups. Fluid feature extraction allowed high-resolution assessment of quantitative fluid burden. A greater proportion of brolucizumab participants achieved true zero and minimal fluid (total fluid volume between 0.0001 and 0.001mm3) versus aflibercept participants at week 40. True zero fluid during q12 brolucizumab dosing was achieved in 36.6% to 38.5%, similar to the 25.6% to 38.5% during the corresponding q8 aflibercept cycles. TRFI was significantly reduced from baseline in all groups.
Conclusions:
Higher-order OCT analysis demonstrates the feasibility of fluid feature extraction and longitudinal volumetric fluid burden and TRFI characterization in nAMD, supporting a unique opportunity for fluid burden assessment and the impact on outcomes.
Translational Relevance:
Detection and characterization of disease activity is vital for optimal treatment of nAMD. Longitudinal assessment of fluid dynamics and the TRFI provide important proof of concept for future automated tools in characterizing disease activity.
AuthorsJustis P Ehlers, Julie Clark, Atsuro Uchida, Natalia Figueiredo, Amy Babiuch, Katherine E Talcott, Leina Lunasco, Thuy K Le, Xiangyi Meng, Ming Hu, Jamie Reese, Sunil K Srivastava
JournalTranslational vision science & technology (Transl Vis Sci Technol) Vol. 10 Issue 3 Pg. 29 (03 01 2021) ISSN: 2164-2591 [Electronic] United States
PMID34003963 (Publication Type: Clinical Trial, Phase II, Journal Article, Randomized Controlled Trial, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Angiogenesis Inhibitors
  • Vascular Endothelial Growth Factor A
Topics
  • Angiogenesis Inhibitors (therapeutic use)
  • Humans
  • Hydrodynamics
  • Intravitreal Injections
  • Tomography, Optical Coherence
  • Vascular Endothelial Growth Factor A
  • Visual Acuity
  • Wet Macular Degeneration (drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: