HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Laponite-Incorporated UiO-66-NH2-Polyethylene Oxide Composite Membranes for Protection against Chemical Warfare Agent Simulants.

Abstract
A strategy is developed to enhance the barrier protection of polyethylene oxide (PEO)-metal-organic framework (MOF) composite films against chemical warfare agent simulants. To achieve enhanced protection, an impermeable high-aspect-ratio filler in the form of Laponite RD (LRD) clay platelets was incorporated into a composite PEO film containing MOF UiO-66-NH2. The inclusion of the platelets aids in mitigating permeation of inert hydrocarbons (octane) and toxic chemicals (2-chloroethyl ethyl sulfide, 2-CEES) of dimensions/chemistry similar to prominent vesicant threats while still maintaining high water vapor transport rates (WVTR). By utilizing small-angle neutron scattering, small-angle X-ray scattering, and wide-angle X-ray scattering, the LRD platelet alignment of the films was determined, and the structure of the films was correlated with performance as a barrier material. Performance of the membranes against toxic chemical threats was assessed using permeation testing of octane and 2-CEES, a common simulant for the vesicant mustard gas, and breathability of the membranes was assessed using WVTR measurements. To assess their robustness, chemical exposure (in situ diffuse reflectance infrared Fourier transform spectroscopy) and mechanical (tensile strength) measurements were also performed. It was demonstrated that the barrier performance of the film upon inclusion of the LRD platelets exceeds that of other MOF-polymer composites found in the literature and that this approach establishes a new path for improving permselective materials for chemical protection applications.
AuthorsMatthew A Browe, John Landers, Trenton M Tovar, John J Mahle, Alex Balboa, Wesley O Gordon, Masafumi Fukuto, Christopher J Karwacki
JournalACS applied materials & interfaces (ACS Appl Mater Interfaces) Vol. 13 Issue 8 Pg. 10500-10512 (Mar 03 2021) ISSN: 1944-8252 [Electronic] United States
PMID33606491 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: