HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cerebrovascular reactivity and cerebral perfusion of rats with acute liver failure: role of L-glutamine and asymmetric dimethylarginine in L-arginine-induced response.

Abstract
Cerebral blood flow (CBF) is impaired in acute liver failure (ALF), however, the complexity of the underlying mechanisms has often led to inconclusive interpretations. Regulation of CBF depends at least partially on variations in the local brain L-arginine concentration and/or its metabolic rate. In ALF, other factors, like an increased concentration of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor and elevated level of L-glutamine, may contribute to CBF alteration. This study demonstrated strong differences in the reactivity of the middle cerebral arteries and their response to extravascular L-arginine application between vessels isolated from rats with thioacetamide (TAA)-induced ALF and control animals. Our results also showed the decrease in the cerebral perfusion in TAA rats measured by arterial spin labeling perfusion magnetic resonance. Subsequently, we aimed to investigate the importance of balance between the concentration of ADMA and L-arginine in the CBF regulation. In vivo, intraperitoneal L-arginine administration in TAA rats corrected: (i) decrease in cerebral perfusion, (ii) decrease in brain extracellular L-arginine/ADMA ratio and (iii) increase in brain L-glutamine concentration. Our study implicates that impaired vascular tone of cerebral arteries is most likely associated with exposure to high ADMA and L-glutamine levels resulting in limited availability of L-arginine and might be responsible for reduced cerebral perfusion observed in ALF.
AuthorsAnna Czarnecka, Marta Aleksandrowicz, Krzysztof Jasiński, Radosław Jaźwiec, Katarzyna Kalita, Wojciech Hilgier, Magdalena Zielińska
JournalJournal of neurochemistry (J Neurochem) Vol. 147 Issue 5 Pg. 692-704 (12 2018) ISSN: 1471-4159 [Electronic] England
PMID30151828 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2018 International Society for Neurochemistry.
Chemical References
  • Thioacetamide
  • Glutamine
  • N,N-dimethylarginine
  • Arginine
Topics
  • Animals
  • Arginine (analogs & derivatives, metabolism, pharmacology)
  • Brain (diagnostic imaging)
  • Cerebrovascular Circulation (drug effects)
  • Extracellular Space (metabolism)
  • Glutamine (metabolism)
  • Liver Failure, Acute (chemically induced, diagnostic imaging, physiopathology)
  • Magnetic Resonance Imaging
  • Male
  • Middle Cerebral Artery (drug effects)
  • Muscle, Smooth, Vascular (drug effects)
  • Prefrontal Cortex (drug effects, metabolism)
  • Rats
  • Rats, Sprague-Dawley
  • Thioacetamide

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: