HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A highly conducting graphene film with dual-side molecular n-doping.

Abstract
Doping is an efficient way to engineer the conductivity and the work function of graphene, which is, however, limited to wet-chemical doping or metal deposition particularly for n-doping, Here, we report a simple method of modulating the electrical conductivity of graphene by dual-side molecular n-doping with diethylenetriamine (DETA) on the top and amine-functionalized self-assembled monolayers (SAMs) at the bottom. The resulting charge carrier density of graphene is as high as -1.7 × 10(13) cm(-2), and the sheet resistance is as low as ∼86 ± 39 Ω sq(-1), which is believed to be the lowest sheet resistance of monolayer graphene reported so far. This facile dual-side n-doping strategy would be very useful to optimize the performance of various graphene-based electronic devices.
AuthorsYoungsoo Kim, Jaesung Park, Junmo Kang, Je Min Yoo, Kyoungjun Choi, Eun Sun Kim, Jae-Boong Choi, Chanyong Hwang, K S Novoselov, Byung Hee Hong
JournalNanoscale (Nanoscale) Vol. 6 Issue 16 Pg. 9545-9 (Aug 21 2014) ISSN: 2040-3372 [Electronic] England
PMID24993121 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: