HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming.

Abstract
Human induced pluripotent stem cells (iPSCs) provide a valuable model for regenerative medicine and human disease research. To date, however, the reprogramming efficiency of human adult cells is still low. Recent studies have revealed that cell cycle is a key parameter driving epigenetic reprogramming to pluripotency. As is well known, retroviruses such as the Moloney murine leukemia virus (MoMLV) require cell division to integrate into the host genome and replicate, whereas the target primary cells for reprogramming are a mixture of several cell types with different cell cycle rhythms. Whether cell cycle synchronization has potential effect on retrovirus induced reprogramming has not been detailed. In this study, utilizing transient serum starvation induced synchronization, we demonstrated that starvation generated a reversible cell cycle arrest and synchronously progressed through G2/M phase after release, substantially improving retroviral infection efficiency. Interestingly, synchronized human dermal fibroblasts (HDF) and adipose stem cells (ASC) exhibited more homogenous epithelial morphology than normal FBS control after infection, and the expression of epithelial markers such as E-cadherin and Epcam were strongly activated. Futhermore, synchronization treatment ultimately improved Nanog positive clones, achieved a 15-20 fold increase. These results suggested that cell cycle synchronization promotes the mesenchymal to epithelial transition (MET) and facilitates retrovirus mediated reprogramming. Our study, utilization of serum starvation rather than additional chemicals, provide a new insight into cell cycle regulation and induced reprogramming of human cells.
AuthorsMengfei Chen, Jingjing Huang, Xuejiao Yang, Bingqian Liu, Weizhong Zhang, Li Huang, Fei Deng, Jian Ma, Yujing Bai, Rong Lu, Bing Huang, Qianying Gao, Yehong Zhuo, Jian Ge
JournalPloS one (PLoS One) Vol. 7 Issue 4 Pg. e28203 ( 2012) ISSN: 1932-6203 [Electronic] United States
PMID22529890 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Culture Media, Serum-Free
Topics
  • Cell Cycle (physiology)
  • Cell Differentiation
  • Cellular Reprogramming (physiology)
  • Culture Media, Serum-Free
  • Embryonic Stem Cells (cytology, metabolism)
  • Fibroblasts (cytology, metabolism)
  • Humans
  • Induced Pluripotent Stem Cells (cytology, metabolism)
  • Transduction, Genetic

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: