HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Adenosine Diphosphate-Glucose Pyrophosphorylase Control of Starch Accumulation in Rust-infected Wheat Leaves.

Abstract
The variation in starch content in healthy and Puccinia striiformsi-infected wheat leaves was measured from 5 to 15 days after inoculation. The starch content of diseased leaves relative to healthy leaves decreased from 5 to 9 days, increased from 9 to 12 days to twice that of healthy leaves, and decreased from 12 to 15 days after inoculation. Electron micrographs of plant tissues indicated that the starch accumulated in the chloroplasts of host cells adjacent to fungal hyphae. Variations in sugar phosphates, ATP, and inorganic phosphate were measured during the infection process. ADP-glucose pyrophosphorylase was extracted and partially purified from healthy and diseased leaves. When proportionate concentrations of sugar phosphates and inorganic phosphate found in healthy and diseased leaves during the infection process were placed in the assay mixture, ADP-glucose pyrophosphorylase activity was similar to the pattern of starch accumulation and was almost the inverse of the variation observed in inorganic phosphate in diseased leaves during the infection process. A mechanism to explain the accumulation of starch is presented and discussed. This mechanism is based on the regulation of ADP-glucose pyrophosphorylase by changes in effector molecule concentrations during the infection process. Reasons for these changes are presented.
AuthorsP W Macdonald, G A Strobel
JournalPlant physiology (Plant Physiol) Vol. 46 Issue 1 Pg. 126-35 (Jul 1970) ISSN: 0032-0889 [Print] United States
PMID16657403 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: