HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

G-quadruplexes and associated proteins in aging and Alzheimer's disease.

Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
AuthorsM J Vijay Kumar, Rodrigo Morales, Andrey S Tsvetkov
JournalFrontiers in aging (Front Aging) Vol. 4 Pg. 1164057 ( 2023) ISSN: 2673-6217 [Electronic] Switzerland
PMID37323535 (Publication Type: Journal Article, Review)
CopyrightCopyright © 2023 Vijay Kumar, Morales and Tsvetkov.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: