HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

New phthalimide analog ameliorates CCl4 induced hepatic injury in mice via reducing ROS formation, inflammation, and apoptosis.

Abstract
The present study aimed, for the first time, to examine the biochemical effects of new phthalimide analog, 2-[2-(2-Bromo-1-ethyl-1H-indol-3-yl) ethyl]-1H-isoindole-1,3(2H)-dione, compared to thalidomide drug against liver injury induced in mice. Carbon tetrachloride was intraperitoneal injected in mice for 6 consecutive weeks at a dose of 0.4 mL/kg twice a week for liver injury induction. Histopathological examination, levels of malondialdehyde, nitric oxide, and antioxidant enzymes were determined. Additionally, the protein levels of vascular endothelial growth factor, proliferating cell nuclear protein, tumor necrosis factor-alfa, nuclear factor kappa B-p65, B-cell lymphoma-2, and cysteine-aspartic acid protease-3 were determined. Results revealed that the treatment with phthalimide analog improved the detected liver damage and presented an obvious antioxidant activity through decreasing malondialdehyde and nitric oxide levels accompanied by increasing the levels of the antioxidant enzymes. Furthermore, the analog exhibited an effective inhibitory activity towards the studied protein expressions in liver tissues. Moreover, the B-cell lymphoma-2 protein level was increased while the cysteine-aspartic acid protease-3 level was suppressed after the treatment with phthalimide analog. Together, these results propose that phthalimide analog can ameliorate carbon tetrachloride-induced liver injury in mice through its potent inhibition mediating effect in oxidative stress, inflammation, and apoptosis mechanisms.
AuthorsBishoy El-Aarag, Alshaimaa Attia, Magdy Zahran, Ali Younes, Ehab Tousson
JournalSaudi journal of biological sciences (Saudi J Biol Sci) Vol. 28 Issue 11 Pg. 6384-6395 (Nov 2021) ISSN: 1319-562X [Print] Saudi Arabia
PMID34764756 (Publication Type: Journal Article)
Copyright© 2021 The Author(s).

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: