HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Systems biological assessment of human immunity to BNT162b2 mRNA vaccination.

Abstract
The emergency use authorization of two COVID-19 mRNA vaccines in less than a year since the emergence of SARS-CoV-2, represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems biological approach to comprehensively profile the innate and adaptive immune responses in 56 healthy volunteers vaccinated with the Pfizer-BioNTech mRNA vaccine. Vaccination resulted in robust production of neutralizing antibodies (nAbs) against the parent strain and the variant of concern, B.1.351, but no induction of autoantibodies, and significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. The innate response induced within the first 2 days of booster vaccination was profoundly increased, relative to the response at corresponding times after priming. Thus, there was a striking increase in the: (i) frequency of CD14+CD16+ inflammatory monocytes; (ii) concentration of IFN- y in the plasma, which correlated with enhanced pSTAT3 and pSTAT1 levels in monocytes and T cells; and (iii) transcriptional signatures of innate responses characteristic of antiviral vaccine responses against pandemic influenza, HIV and Ebola, within 2 days following booster vaccination compared to primary vaccination. Consistent with these observations, single-cell transcriptomics analysis of 242,479 leukocytes demonstrated a ~100-fold increase in the frequency of a myeloid cluster, enriched in a signature of interferon-response transcription factors (TFs) and reduced in AP-1 TFs, one day after secondary immunization, at day 21. Finally, we delineated distinct molecular pathways of innate activation that correlate with CD8 T cell and nAb responses and identified an early monocyte-related signature that was associated with the breadth of the nAb response against the B1.351 variant strain. Collectively, these data provide insights into the immune responses induced by mRNA vaccines and demonstrate their capacity to stimulate an enhanced innate response following booster immunization.
AuthorsPrabhu S Arunachalam, Madeleine K D Scott, Thomas Hagan, Chunfeng Li, Yupeng Feng, Florian Wimmers, Lilit Grigoryan, Meera Trisal, Venkata Viswanadh Edara, Lilin Lai, Sarah Esther Chang, Allan Feng, Shaurya Dhingra, Mihir Shah, Allie Skye Lee, Sharon Chinthrajah, Tina Sindher, Vamsee Mallajosyula, Fei Gao, Natalia Sigal, Sangeeta Kowli, Sheena Gupta, Kathryn Pellegrini, Gregory Tharp, Sofia Maysel-Auslender, Steven Bosinger, Holden T Maecker, Scott D Boyd, Mark M Davis, Paul J Utz, Mehul S Suthar, Purvesh Khatri, Kari C Nadeau, Bali Pulendran
JournalResearch square (Res Sq) (Apr 22 2021) United States
PMID34013244 (Publication Type: Preprint)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: