HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Precision Radiotherapy: Reduction in Radiation for Oropharyngeal Cancer in the 30 ROC Trial.

AbstractBACKGROUND:
Patients with human papillomavirus-related oropharyngeal cancers have excellent outcomes but experience clinically significant toxicities when treated with standard chemoradiotherapy (70 Gy). We hypothesized that functional imaging could identify patients who could be safely deescalated to 30 Gy of radiotherapy.
METHODS:
In 19 patients, pre- and intratreatment dynamic fluorine-18-labeled fluoromisonidazole positron emission tomography (PET) was used to assess tumor hypoxia. Patients without hypoxia at baseline or intratreatment received 30 Gy; patients with persistent hypoxia received 70 Gy. Neck dissection was performed at 4 months in deescalated patients to assess pathologic response. Magnetic resonance imaging (weekly), circulating plasma cell-free DNA, RNA-sequencing, and whole-genome sequencing (WGS) were performed to identify potential molecular determinants of response. Samples from an independent prospective study were obtained to reproduce molecular findings. All statistical tests were 2-sided.
RESULTS:
Fifteen of 19 patients had no hypoxia on baseline PET or resolution on intratreatment PET and were deescalated to 30 Gy. Of these 15 patients, 11 had a pathologic complete response. Two-year locoregional control and overall survival were 94.4% (95% confidence interval = 84.4% to 100%) and 94.7% (95% confidence interval = 85.2% to 100%), respectively. No acute grade 3 radiation-related toxicities were observed. Microenvironmental features on serial imaging correlated better with pathologic response than tumor burden metrics or circulating plasma cell-free DNA. A WGS-based DNA repair defect was associated with response (P = .02) and was reproduced in an independent cohort (P = .03).
CONCLUSIONS:
Deescalation of radiotherapy to 30 Gy on the basis of intratreatment hypoxia imaging was feasible, safe, and associated with minimal toxicity. A DNA repair defect identified by WGS was predictive of response. Intratherapy personalization of chemoradiotherapy may facilitate marked deescalation of radiotherapy.
AuthorsNadeem Riaz, Eric Sherman, Xin Pei, Heiko Schöder, Milan Grkovski, Ramesh Paudyal, Nora Katabi, Pier Selenica, Takafumi N Yamaguchi, Daniel Ma, Simon K Lee, Rachna Shah, Rahul Kumar, Fengshen Kuo, Abhirami Ratnakumar, Nathan Aleynick, David Brown, Zhigang Zhang, Vaios Hatzoglou, Lydia Y Liu, Adriana Salcedo, Chiaojung J Tsai, Sean McBride, Luc G T Morris, Jay Boyle, Bhuvanesh Singh, Daniel S Higginson, Rama R Damerla, Arnaud da Cruz Paula, Katharine Price, Eric J Moore, Joaquin J Garcia, Robert Foote, Alan Ho, Richard J Wong, Timothy A Chan, Simon N Powell, Paul C Boutros, John L Humm, Amita Shukla-Dave, David Pfister, Jorge S Reis-Filho, Nancy Lee
JournalJournal of the National Cancer Institute (J Natl Cancer Inst) Vol. 113 Issue 6 Pg. 742-751 (06 01 2021) ISSN: 1460-2105 [Electronic] United States
PMID33429428 (Publication Type: Clinical Trial, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Copyright© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please email: [email protected].
Topics
  • Chemoradiotherapy (methods)
  • Humans
  • Oropharyngeal Neoplasms (radiotherapy)
  • Positron-Emission Tomography
  • Prospective Studies
  • Radiotherapy Dosage
  • Tumor Hypoxia

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: