HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The Effects of Hesperidin on Neuronal Apoptosis and Cognitive Impairment in the Sevoflurane Anesthetized Rat are Mediated Through the PI3/Akt/PTEN and Nuclear Factor-κB (NF-κB) Signaling Pathways.

Abstract
BACKGROUND Hesperidin (HPD) is a bioflavonoid found in citrus fruits. This study aimed to investigate the effects of HPD on cerebral morphology and cognitive behavior in sevoflurane anesthetized neonatal rats and the molecular mechanisms involved. MATERIAL AND METHODS Sixty neonatal Sprague-Dawley rats were divided into five groups, including the untreated control group, and the sevoflurane anesthesia groups untreated and treated with 25 mg/kg/day of HPD (HPD25), 50 mg/kg/day of HPD (HPD50), and 100 mg/kg/day of HPD (HPD100). The rat model was created by the administration of sevoflurane on the sixth postnatal day (P6) and for a further three days. Neonatal rats pre-treated with HPD for 19 days were given sevoflurane 30 minutes beforehand (P3 to P21). Rat hippocampal tissue specimens were investigated using the TUNEL assay for apoptosis. Hippocampal tissue homogenates underwent Western blot for the quantification of markers of neuroinflammation and oxidative stress. The neonatal rats were also investigated for behavior, learning, and memory. RESULTS HPD significantly reduced sevoflurane-induced neuronal apoptosis and protein expression of cleaved caspase-3, BAD, BAX, NF-kappaB, TNF-alpha, IL-6, and IL-1ß (p<0.05). HPD significantly increased the expression of Bcl-xL and Bcl-2 (p<0.05), and activated the PI3/Akt pathway. Learning and memory were significantly improved following HPD treatment (p<0.05). HPD treatment modulated the PI3/Akt/PTEN and NF-kappaB signaling pathways, and reduced oxidative stress (p<0.05). CONCLUSIONS In the sevoflurane anesthetized neonatal rat model, treatment with HPD reduced neuronal degeneration, hippocampal inflammation, and improvised memory, learning, and cognitive responses by modulating the PI3/Akt/PTEN and NF-kappaB signaling pathways.
AuthorsHaijin Huang, Cuicui Hu, Lin Xu, Xiaoping Zhu, Lili Zhao, Jia Min
JournalMedical science monitor : international medical journal of experimental and clinical research (Med Sci Monit) Vol. 26 Pg. e920522 (Apr 16 2020) ISSN: 1643-3750 [Electronic] United States
PMID32296010 (Publication Type: Journal Article)
Chemical References
  • Anesthetics, Inhalation
  • NF-kappa B
  • Sevoflurane
  • Hesperidin
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
Topics
  • Anesthetics, Inhalation (toxicity)
  • Animals
  • Apoptosis (drug effects)
  • Brain (drug effects)
  • Cognitive Dysfunction (chemically induced)
  • Hesperidin (pharmacology)
  • Male
  • NF-kappa B (metabolism)
  • Neurons (drug effects)
  • PTEN Phosphohydrolase (metabolism)
  • Phosphatidylinositol 3-Kinases (metabolism)
  • Proto-Oncogene Proteins c-akt (metabolism)
  • Rats
  • Rats, Sprague-Dawley
  • Sevoflurane (toxicity)
  • Signal Transduction (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: