HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Nitric Oxide Synthesis Inhibition and Anti-Inflammatory Effect
of Polypeptide Isolated from Chicken Feather Meal
in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages.

Abstract
Nitric oxide (NO) plays a key role in the pathogenesis of inflammation and has been implicated in endotoxin-induced tissue injury. Chicken feather meal is a rich source of amino acids that may serve as a peptide hydrolysate to inhibit NO activity. Anti-inflammatory hydrolysates of chicken feather meal were prepared and fractionated into five samples based on molecular mass. The smallest fraction (<0.65 kDa) exhibited the highest NO inhibitory activity without cytotoxicity towards macrophage RAW 264.7 cells. Further subfractions were sufficient to obtain amino acid sequences by Q-TOF LC-MS/MS ESI analysis. Of these, the SNPSVAGVR (885.97 Da) peptide and its corresponding pure synthetic peptide have inhibitory activity against NO production by RAW 264.7 cells (IC50=(55.2±0.2) mM) without cytotoxicity. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR results revealed that the peptide of the obtained fraction reduced transcript expression levels of the pro-inflammatory cytokines iNOS, TNF-α, COX-2 and IL-6 in lipopolysaccharide-stimulated RAW 264.7 cells. These results suggest that the peptides derived from the chicken feather meal protein could potentially be used as a promising ingredient in functional foods or nutraceuticals against inflammatory diseases.
AuthorsAurachorn Inkanuwat, Romteera Sukaboon, Onrapak Reamtong, Pravit Asawanonda, Ake Pattaratanakun, Tanatorn Saisavoey, Papassara Sangtanoo, Aphichart Karnchanatat
JournalFood technology and biotechnology (Food Technol Biotechnol) Vol. 57 Issue 2 Pg. 200-212 (Jun 2019) ISSN: 1330-9862 [Print] Croatia
PMID31537969 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: