HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Integrating in situ formation of nanozymes with three-dimensional dendritic mesoporous silica nanospheres for hypoxia-overcoming photodynamic therapy.

Abstract
Despite great progress in photodynamic therapy (PDT), the therapeutic effect is still limited by some points, such as tumor hypoxia, the short lifetime and the limited action region of 1O2. Herein, a special kind of three-dimensional dendritic mesoporous silica nanosphere (3D-dendritic MSN) was synthesized and used as a robust nanocarrier to deliver abundant hydrophobic photosensitizer chlorin e6 (Ce6) to the A549 lung cancer cells. To address the tumor hypoxia issue, the nanozyme Pt nanoparticles (Pt NPs) were immobilized onto the channels of 3D-dendritic MSNs to catalyze the conversion of intracellular H2O2 to oxygen. Moreover, due to the in situ reduction process, the uniform Pt NPs distributed well on the surface of 3D-dendritic MSNs with high homogeneous dispersity. Additionally, a mitochondria-targeting ligand, triphenylphosphine (TPP), was conjugated to the Pt-decorated 3D-dendritic MSN composites to form a mitochondria targeted system for the PDT. In a combination of the peroxidase-like Pt NPs with mitochondria-targeting ability of TPP, a reactive oxygen species (ROS) burst in the mitochondria was achieved and resulted in the cell apoptosis. This well-designed system shows an enhanced PDT effect of killing A549 cells, and promotes a new H2O2-activatable strategy to overcome hypoxia for tumor PDT.
AuthorsXiaoli Cai , Yanan Luo , Yang Song , Dong Liu , Hongye Yan , He Li , Dan Du , Chengzhou Zhu , Yuehe Lin
JournalNanoscale (Nanoscale) Vol. 10 Issue 48 Pg. 22937-22945 (Dec 13 2018) ISSN: 2040-3372 [Electronic] England
PMID30500027 (Publication Type: Journal Article)
Chemical References
  • Chlorophyllides
  • Porphyrins
  • Platinum
  • phytochlorin
  • Silicon Dioxide
Topics
  • A549 Cells
  • Chlorophyllides
  • Drug Delivery Systems (methods)
  • Humans
  • Metal Nanoparticles (chemistry, therapeutic use)
  • Mitochondria (metabolism, pathology)
  • Nanospheres (chemistry, therapeutic use)
  • Neoplasms (drug therapy, metabolism, pathology)
  • Photochemotherapy (methods)
  • Platinum (chemistry, pharmacology)
  • Porosity
  • Porphyrins (chemistry, pharmacology)
  • Silicon Dioxide (chemistry, pharmacology)
  • Tumor Hypoxia (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: