HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats.

Abstract
Previous studies indicated the beneficial effects of glial cell line-derived neurotrophic factor (GDNF) and transplanted neural stem cells (NSCs) on stroke. Here, we explored whether transplantation of neural stem cells (NSCs) modified by GDNF gene provides a better therapeutic effect than native NSCs after stroke. Primary rat NSCs were transfected with GDNF plasmid (GDNF/NSCs, labeled by green fluorescent protein from AdEasy-1, GFP). Adult rats were subjected to two-hour middle cerebral artery occlusion and reperfusion, followed by infusion of NSCs (labeled with5-bromo-2'-deoxyuridine before infusion, BrdU), GDNF/NSCs and saline at 3 days after reperfusion (NSCs group, GDNF/NSCs group, control group), respectively. All rats were sacrificed at 1, 2, 3, 5, and 7 weeks after reperfusion. Modified Neurological Severity Scores (mNSS) test and H and E staining were respectively performed to evaluate neurological function and lesion volume. Immunohistochemistry was used to identify implanted cells and observe the expressions of Synaptophysin (Syp) and postsynaptic density-95 (PSD-95) and caspase-3. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) was employed to observe apoptotic cells. Western blotting was used to detect brain-derived neurotrophic factor (BDNF) and NT-3 protein expression. Significant recovery of mNSS was found in GDNF/NSCs rats at 2 and 3 weeks after reperfusion compared with NSCs rats. Lesion volume in the NSCs and GDNF/NSCs groups was reduced significantly compared with control group. The number of NSCs in the GDNF/NSCs group was significantly increased in comparison with NSCs group. Moreover, Syp-immunoreactive product at 2 and 3 weeks after reperfusion and PSD-95 immunoreactive product in the GDNF/NSCs group were significantly increased compared with NSCs group. In contrast, caspase-3 positive cells and TUNEL-positive cells in the GDNF/NSCs group were significantly decreased compared with NSCs group. Significant increase of BDNF protein in the GDNF/NSCs and NSCs groups was observed compared to the control group at different time points of reperfusion, and GDNF/NSCs grafting significantly increased BDNF protein expression compared to NSCs grafting. In addition, significant increase of NT-3 protein in GDNF/NSCs and NSCs groups was detected only at 1 week of reperfusion compared to control group. The results demonstrate that grafting NSCs modified by GDNF gene provides better neuroprotection for stroke than NSCs grafting alone.
AuthorsB Chen, X-Q Gao, C-X Yang, S-K Tan, Z-L Sun, N-H Yan, Y-G Pang, M Yuan, G-J Chen, G-T Xu, K Zhang, Q L Yuan
JournalBrain research (Brain Res) Vol. 1284 Pg. 1-11 (Aug 11 2009) ISSN: 1872-6240 [Electronic] Netherlands
PMID19520066 (Publication Type: Journal Article)
Chemical References
  • Brain-Derived Neurotrophic Factor
  • Disks Large Homolog 4 Protein
  • Dlg4 protein, rat
  • Glial Cell Line-Derived Neurotrophic Factor
  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins
  • Synaptophysin
  • Nerve Growth Factor
Topics
  • Animals
  • Blotting, Western
  • Brain Ischemia (metabolism, pathology, therapy)
  • Brain-Derived Neurotrophic Factor (biosynthesis)
  • Disks Large Homolog 4 Protein
  • Female
  • Genetic Therapy (methods)
  • Glial Cell Line-Derived Neurotrophic Factor (genetics)
  • Immunohistochemistry
  • In Situ Nick-End Labeling
  • Infarction, Middle Cerebral Artery (therapy)
  • Intracellular Signaling Peptides and Proteins
  • Male
  • Membrane Proteins (biosynthesis)
  • Nerve Growth Factor (biosynthesis)
  • Neurons (transplantation)
  • Rats
  • Rats, Wistar
  • Recovery of Function
  • Stem Cell Transplantation (methods)
  • Synaptophysin (biosynthesis)
  • Transfection

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: