HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Defense Responses in Infected and Elicited Cucumber (Cucumis sativus L.) Hypocotyl Segments Exhibiting Acquired Resistance.

Abstract
Segments from dark-grown cucumber (Cucumis sativus L.) hypocotyls were used to study defense reactions occurring upon fungal infection and induced by elicitors in the same tissue. The segments were rendered resistant to infection by Colletotrichum lagenarium either by growing the seedlings in the presence of dichloroisonicotinic acid (DCIA) or by preincubation of the cut segments with DCIA, salicylic acid (SA), or 5-chlorosalicylic acid (5CSA). This resistance appears to be due mainly to inhibition of fungal penetration into epidermal cells. In the resistant hypocotyl segments, the fungus induced, at the time of attempted penetration, an increased deposition of phenolics, which were visualized by autofluorescence. These phenolics were located mainly in the epidermal cell wall around and in the emerging papillae below appressoria and were quantified either as lignin-like polymers by the thioglycolic acid method or as 4-OH-benzaldehyde, 4-OH-benzoic, or 4-coumaric acid liberated upon treatment with alkali at room temperature. Pretreatment with DCIA, SA, and 5CSA induced little chitinase activity, but this activity greatly increased in resistant tissues upon subsequent infection. These observations indicate that resistance is associated with an improved perception of the pathogen stimulus resulting in the enhanced induction of diverse defense reactions. When the cut segments were pretreated with DCIA, SA, or 5CSA and then split and incubated with chitosan fragments, the deposition of cell wall phenolics was also enhanced. These pretreated and split segments also exhibited an increase in the rapid production of activated oxygen species induced by an elicitor preparation from Phytophthora megasperma f. sp. Glya. Pretreatment of the segments with methyl jasmonate neither induced resistance nor enhanced induction of cell wall phenolics upon fungal infection, although we observed in the corresponding split segments some increase in chitosan-induced cell wall phenolics and in elicitor-induced rapid production of activated oxygen species.
AuthorsJ. Siegrist, W. Jeblick, H. Kauss
JournalPlant physiology (Plant Physiol) Vol. 105 Issue 4 Pg. 1365-1374 (Aug 1994) ISSN: 1532-2548 [Electronic] United States
PMID12232291 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: