HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Human Galectin-9 Potently Enhances SARS-CoV-2 Replication and Inflammation in Airway Epithelial Cells.

Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a β-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. Here, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including primary AECs in air-liquid interface (ALI) culture. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an ACE2-dependent manner, enhancing the binding affinity of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induce the expression of key pro-inflammatory programs in AECs including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.
Importance:
COVID-19 continues to have a major global health and economic impact. Identifying host molecular determinants that modulate SARS-CoV-2 infectivity and pathology is a key step in discovering novel therapeutic approaches for COVID-19. Several recent studies have revealed that plasma concentrations of the human β-galactoside-binding protein galectin-9 (Gal-9) are highly elevated in COVID-19 patients. In this study, we investigated the impact of Gal-9 on SARS-CoV-2 pathogenesis ex vivo in airway epithelial cells (AECs), the critical initial targets of SARS-CoV-2 infection. Our findings reveal that Gal-9 potently enhances SARS-CoV-2 replication in AECs, interacting with glycans to enhance the binding between viral particles and entry receptors on the target cell surface. Moreover, we determined that Gal-9 accelerates and exacerbates several virus-induced pro-inflammatory programs in AECs that are established signature characteristics of COVID-19 disease and SARS-CoV-2-induced acute respiratory distress syndrome (ARDS). Our findings suggest that Gal-9 is a promising pharmacological target for COVID-19 therapies.
AuthorsLi Du, Mohamed S Bouzidi, Akshay Gala, Fred Deiter, Jean-Noël Billaud, Stephen T Yeung, Prerna Dabral, Jing Jin, Graham Simmons, Zain Dossani, Toshiro Niki, Lishomwa C Ndhlovu, John R Greenland, Satish K Pillai
JournalbioRxiv : the preprint server for biology (bioRxiv) (May 16 2022) United States
PMID35378763 (Publication Type: Preprint)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: