HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Evolution of Anti-RBD IgG Avidity following SARS-CoV-2 Infection.

Abstract
SARS-CoV-2 infection rapidly elicits anti-Spike antibodies whose quantity in plasma gradually declines upon resolution of symptoms. This decline is part of the evolution of an immune response leading to B cell differentiation into short-lived antibody-secreting cells or resting memory B cells. At the same time, the ongoing class switch and antibody maturation processes occurring in germinal centers lead to the selection of B cell clones secreting antibodies with higher affinity for their cognate antigen, thereby improving their functional activity. To determine whether the decline in SARS-CoV-2 antibodies is paralleled with an increase in avidity of the anti-viral antibodies produced, we developed a simple assay to measure the avidity of anti-receptor binding domain (RBD) IgG elicited by SARS-CoV-2 infection. We longitudinally followed a cohort of 29 convalescent donors with blood samples collected between 6- and 32-weeks post-symptoms onset. We observed that, while the level of antibodies declines over time, the anti-RBD avidity progressively increases and correlates with the B cell class switch. Additionally, we observed that anti-RBD avidity increased similarly after SARS-CoV-2 mRNA vaccination and after SARS-CoV-2 infection. Our results suggest that anti-RBD IgG avidity determination could be a surrogate assay for antibody affinity maturation and, thus, suitable for studying humoral responses elicited by natural infection and/or vaccination.
AuthorsAlexandra Tauzin, Gabrielle Gendron-Lepage, Manon Nayrac, Sai Priya Anand, Catherine Bourassa, Halima Medjahed, Guillaume Goyette, Mathieu Dubé, Renée Bazin, Daniel E Kaufmann, Andrés Finzi
JournalViruses (Viruses) Vol. 14 Issue 3 (03 04 2022) ISSN: 1999-4915 [Electronic] Switzerland
PMID35336940 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antibodies, Viral
  • Immunoglobulin G
Topics
  • Antibodies, Viral
  • COVID-19
  • Humans
  • Immunoglobulin G
  • Protein Binding
  • SARS-CoV-2 (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: