HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Targeting mechanosensitive endothelial TXNDC5 to stabilize eNOS and reduce atherosclerosis in vivo.

Abstract
Although atherosclerosis preferentially develops at arterial curvatures and bifurcations where disturbed flow (DF) activates endothelium, therapies targeting flow-dependent mechanosensing pathways in the vasculature are unavailable. Here, we provided experimental evidence demonstrating a previously unidentified causal role of DF-induced endothelial TXNDC5 (thioredoxin domain containing 5) in atherosclerosis. TXNDC5 was increased in human and mouse atherosclerotic lesions and induced in endothelium subjected to DF. Endothelium-specific Txndc5 deletion markedly reduced atherosclerosis in ApoE-/- mice. Mechanistically, DF-induced TXNDC5 increases proteasome-mediated degradation of heat shock factor 1, leading to reduced heat shock protein 90 and accelerated eNOS (endothelial nitric oxide synthase) protein degradation. Moreover, nanoparticles formulated to deliver Txndc5-targeting CRISPR-Cas9 plasmids driven by an endothelium-specific promoter (CDH5) significantly increase eNOS protein and reduce atherosclerosis in ApoE-/- mice. These results delineate a new molecular paradigm that DF-induced endothelial TXNDC5 promotes atherosclerosis and establish a proof of concept of targeting endothelial mechanosensitive pathways in vivo against atherosclerosis.
AuthorsChih-Fan Yeh, Shih-Hsin Cheng, Yu-Shan Lin, Tzu-Pin Shentu, Ru-Ting Huang, Jiayu Zhu, Yen-Ting Chen, Sandeep Kumar, Mao-Shin Lin, Hsien-Li Kao, Po-Hsun Huang, Esther Roselló-Sastre, Francisca Garcia, Hanjoong Jo, Yun Fang, Kai-Chien Yang
JournalScience advances (Sci Adv) Vol. 8 Issue 3 Pg. eabl8096 (Jan 21 2022) ISSN: 2375-2548 [Electronic] United States
PMID35061532 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: