HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Protective Efficacy of Spilanthes acmella Murr. Extracts and Bioactive Constituents in Neuronal Cell Death.

Abstract
Spilanthes acmella Murr., a well-known Thai traditional medicine, has been used for treatment of toothache, rheumatism, and fever. Diverse pharmacological activities of S. acmella Murr. have been reported. In this study, antioxidative and neuroprotective effects of S. acmella Murr. extracts as well as bioactive scopoletin, vanillic acid, and trans-ferulic acid found in the aerial parts of this plant species have been described. Protective effect of S. acmella Murr. extracts and bioactive compounds on dexamethasone-induced neuronal cell death was investigated. Different plant crude ethyl acetate (EtOAc) and methanol (MeOH) extracts including pure compounds of S. acmella Murr. were evaluated in human neuroblastoma SH-SY5Y cells. Cytotoxic effects were performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mechanisms involved in the antioxidant effects of S. acmella Murr. regarding the activation of antioxidant marker proteins such as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) were determined using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay, Western blot analysis, and immunocytochemistry. Dexamethasone significantly caused the decrease of SH-SY5Y cell viability. Conversely, the increases in reactive oxygen species (ROS), autophagy, and apoptosis were observed in dexamethasone-treated cells. S. acmella Murr. MeOH and EtOAc extracts, as well as the bioactive compounds, reversed the toxic effect of dexamethasone by increasing the cell viability, SIRT3 protein expression but reducing the ROS, autophagy, and apoptosis. This study demonstrated that S. acmella Murr. may exert its protective effects against ROS through SOD2 and SIRT3 signaling pathways in dexamethasone-induced neurotoxicity. S. acmella Murr. may be a candidate therapy for neuroprotection.
AuthorsWilasinee Suwanjang, Chayanit Sirisuwat, Sujittra Srisung, Chartchalerm Isarankura-Na-Ayudhya, Supitcha Pannengpetch, Supaluk Prachayasittikul
JournalRejuvenation research (Rejuvenation Res) Vol. 25 Issue 1 Pg. 2-15 (Feb 2022) ISSN: 1557-8577 [Electronic] United States
PMID35044248 (Publication Type: Journal Article)
Chemical References
  • Antioxidants
  • Neuroprotective Agents
  • Plant Extracts
  • Reactive Oxygen Species
Topics
  • Antioxidants (pharmacology)
  • Asteraceae (chemistry)
  • Cell Death
  • Cell Survival
  • Humans
  • Neuroprotective Agents (pharmacology)
  • Plant Extracts (therapeutic use)
  • Reactive Oxygen Species

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: