HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology.

Abstract
Frontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP. T2*-weighted (T2*w) ex vivo MRI has previously been shown to be sensitive to non-heme iron in healthy intracortical lamination and myelin, and to pathological iron deposits in amyloid-beta plaques and activated microglia in Alzheimer's disease neuropathologic change (ADNC). However, an integrated, ex vivo MRI and histopathology approach is understudied in FTLD. We apply joint, whole-hemisphere ex vivo MRI at 7 T and histopathology to the study autopsy-confirmed FTLD-Tau (n = 4) and FTLD-TDP (n = 3), relative to ADNC disease-control brains with antemortem clinical symptoms of frontotemporal dementia (n = 2), and an age-matched healthy control. We detect distinct laminar patterns of novel iron-laden glial pathology in both FTLD-Tau and FTLD-TDP brains. We find iron-positive ameboid and hypertrophic microglia and astrocytes largely in deeper GM and adjacent WM in FTLD-Tau. In contrast, FTLD-TDP presents prominent superficial cortical layer iron reactivity in astrocytic processes enveloping small blood vessels with limited involvement of adjacent WM, as well as more diffuse distribution of punctate iron-rich dystrophic microglial processes across all GM lamina. This integrated MRI/histopathology approach reveals ex vivo MRI features that are consistent with these pathological observations distinguishing FTLD-Tau and FTLD-TDP subtypes, including prominent irregular hypointense signal in deeper cortex in FTLD-Tau whereas FTLD-TDP showed upper cortical layer hypointense bands and diffuse cortical speckling. Moreover, differences in adjacent WM degeneration and iron-rich gliosis on histology between FTLD-Tau and FTLD-TDP were also readily apparent on MRI as hyperintense signal and irregular areas of hypointensity, respectively that were more prominent in FTLD-Tau compared to FTLD-TDP. These unique histopathological and radiographic features were distinct from healthy control and ADNC brains, suggesting that iron-sensitive T2*w MRI, adapted to in vivo application at sufficient resolution, may eventually offer an opportunity to improve antemortem diagnosis of FTLD proteinopathies using tissue-validated methods.
AuthorsM Dylan Tisdall, Daniel T Ohm, Rebecca Lobrovich, Sandhitsu R Das, Gabor Mizsei, Karthik Prabhakaran, Ranjit Ittyerah, Sydney Lim, Corey T McMillan, David A Wolk, James Gee, John Q Trojanowski, Edward B Lee, John A Detre, Paul Yushkevich, Murray Grossman, David J Irwin
JournalNeuroImage. Clinical (Neuroimage Clin) Vol. 33 Pg. 102913 ( 2022) ISSN: 2213-1582 [Electronic] Netherlands
PMID34952351 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Chemical References
  • DNA-Binding Proteins
  • tau Proteins
  • Iron
Topics
  • DNA-Binding Proteins
  • Frontotemporal Dementia (diagnostic imaging, pathology)
  • Frontotemporal Lobar Degeneration (diagnostic imaging, pathology)
  • Humans
  • Inflammation (diagnostic imaging)
  • Iron
  • Magnetic Resonance Imaging
  • tau Proteins

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: