HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Dihydroartemisinin inhibits the migration of esophageal cancer cells by inducing autophagy.

Abstract
Esophageal cancer (EC) is a complex gastrointestinal malignancy and its global incidence rate ranks 7th among all cancer types. Due to its aggressive nature and the potential for early metastasis, the survival rates of patients with EC are poor. Dihydroartemisinin (DHA) is the primary active derivative of artemisinin, and, as well as its use as an anti-malarial, DHA has also exhibited antitumor activity in various cancer models, such as cholangiocarcinoma, head and neck carcinoma, and hepatocellular carcinoma cells. However, the molecular mechanisms underlying the antitumor effect of DHA in the treatment of EC remains poorly understood. The results of the present study demonstrated that DHA significantly inhibited the migration of TE-1 and Eca-109 EC cells in a dose-dependent manner by activating autophagy. DHA treatment also significantly reversed epithelial-mesenchymal transition (EMT) by downregulating the EMT-associated markers, N-cadherin and vimentin, and upregulating the expression of E-cadherin. Mechanistically, DHA treatment decreased Akt phosphorylation and inhibited the Akt/mTOR signaling pathway, leading to the activation of autophagy. The levels of the autophagy-associated proteins were suppressed and DHA-mediated inhibition of migration in EC cells was reversed when an active form of Akt was overexpressed. In conclusion, the present study demonstrated the potential value of DHA in the treatment of EC, and revealed the underlying mechanism by which FDHA inhibits cellular migration.
AuthorsXiao Chen, Lan-Ying He, Shu Lai, Yao He
JournalOncology letters (Oncol Lett) Vol. 20 Issue 4 Pg. 94 (Oct 2020) ISSN: 1792-1074 [Print] Greece
PMID32831913 (Publication Type: Journal Article)
CopyrightCopyright: © Chen et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: