HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

lncRNA LIFR-AS1 suppresses invasion and metastasis of non-small cell lung cancer via the miR-942-5p/ZNF471 axis.

AbstractBACKGROUND:
MicroRNA 942-5p (miR-942-5p) has been reported to promote migration and invasion in non-small cell lung cancer (NSCLC), but the underlying mechanism is not completely understood. The interplay between long non-coding RNAs (lncRNAs) and miRNAs plays a crucial role in tumor progression.
METHODS:
In the present study, we performed bioinformatic and biochemical analyses to identify miR-942-5p-interacting lncRNAs. The function and clinical significance of the candidate lncRNA(s) in NSCLC were determined.
RESULTS:
We identified LIFR-AS1 as a pivotal miR-942-5p-interacting lncRNA. Overexpression of miR-942-5p caused a reduction of LIFR-AS1 in NSCLC cells. LIFR-AS1 showed the ability to sponge miR-942-5p, leading to derepression of ZNF471. Functionally, LIFR-AS1 overexpression inhibited NSCLC cell migration and invasion, whereas LIFR-AS1 silencing yielded an opposite effect. In vivo studies confirmed that LIFR-AS1 overexpression suppressed lung metastasis of NSCLC cells. Rescue experiments demonstrated that enforced expression of miR-942-5p or depletion of ZNF471 restored the migration and invasion capacity of LIFR-AS1-overexpressing cells. Moreover, overexpression of ZNF471 restrained NSCLC cell invasion. Clinically, LIFR-AS1 downregulation was significantly correlated with TNM stage, lymph node metastasis, and reduced overall survival in NSCLC patients.
CONCLUSIONS:
we provide first evidence for the involvement of the LIFR-AS1/miR-942-5p/ZNF471 axis in NSCLC invasion and metastasis. LIFR-AS1 may represent a novel target for the treatment of NSCLC.
AuthorsQun Wang, Jing Wu, Hui Huang, Yan Jiang, Ying Huang, Hongyan Fang, Gang Zheng, Xiaochun Zhou, Yujuan Wu, Changjiang Lei, Desheng Hu
JournalCancer cell international (Cancer Cell Int) Vol. 20 Pg. 180 ( 2020) ISSN: 1475-2867 [Print] England
PMID32489316 (Publication Type: Journal Article)
Copyright© The Author(s) 2020.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: