HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Oxidative Stress and Mitochondrial Abnormalities Contribute to Decreased Endothelial Nitric Oxide Synthase Expression and Renal Disease Progression in Early Experimental Polycystic Kidney Disease.

Abstract
Vascular abnormalities are the most important non-cystic complications in Polycystic Kidney Disease (PKD) and contribute to renal disease progression. Endothelial dysfunction and oxidative stress are evident in patients with ADPKD, preserved renal function, and controlled hypertension. The underlying biological mechanisms remain unknown. We hypothesized that in early ADPKD, the reactive oxygen species (ROS)-producing nicotinamide adenine dinucleotide phosphate hydrogen (NAD(P)H)-oxidase complex-4 (NOX4), a major source of ROS in renal tubular epithelial cells (TECs) and endothelial cells (ECs), induces EC mitochondrial abnormalities, contributing to endothelial dysfunction, vascular abnormalities, and renal disease progression. Renal oxidative stress, mitochondrial morphology (electron microscopy), and NOX4 expression were assessed in 4- and 12-week-old PCK and Sprague-Dawley (wild-type, WT) control rats (n = 8 males and 8 females each). Endothelial function was assessed by renal expression of endothelial nitric oxide synthase (eNOS). Peritubular capillaries were counted in hematoxylin-eosin (H&E)-stained slides and correlated with the cystic index. The enlarged cystic kidneys of PCK rats exhibited significant accumulation of 8-hydroxyguanosine (8-OHdG) as early as 4 weeks of age, which became more pronounced at 12 weeks. Mitochondria of TECs lining cysts and ECs exhibited loss of cristae but remained preserved in non-cystic TECs. Renal expression of NOX4 was upregulated in TECs and ECs of PCK rats at 4 weeks of age and further increased at 12 weeks. Contrarily, eNOS immunoreactivity was lower in PCK vs. WT rats at 4 weeks and further decreased at 12 weeks. The peritubular capillary index was lower in PCK vs. WT rats at 12 weeks and correlated inversely with the cystic index. Early PKD is associated with NOX4-induced oxidative stress and mitochondrial abnormalities predominantly in ECs and TECs lining cysts. Endothelial dysfunction precedes capillary loss, and the latter correlates with worsening of renal disease. These observations position NOX4 and EC mitochondria as potential therapeutic targets in PKD.
AuthorsAlp S Kahveci, Tania T Barnatan, Ali Kahveci, Alexis E Adrian, Jennifer Arroyo, Alfonso Eirin, Peter C Harris, Amir Lerman, Lilach O Lerman, Vicente E Torres, Maria V Irazabal
JournalInternational journal of molecular sciences (Int J Mol Sci) Vol. 21 Issue 6 (Mar 14 2020) ISSN: 1422-0067 [Electronic] Switzerland
PMID32183375 (Publication Type: Journal Article)
Chemical References
  • Reactive Oxygen Species
  • Guanosine
  • 8-hydroxyguanosine
  • Nitric Oxide Synthase Type III
  • Nos3 protein, rat
  • NADPH Oxidase 4
  • Nox4 protein, rat
Topics
  • Animals
  • Disease Progression
  • Endothelial Cells (metabolism)
  • Epithelial Cells (metabolism)
  • Female
  • Guanosine (analogs & derivatives, analysis)
  • Kidney (pathology)
  • Male
  • Mitochondria (pathology)
  • NADPH Oxidase 4 (metabolism)
  • Nitric Oxide Synthase Type III (biosynthesis, metabolism)
  • Oxidative Stress (physiology)
  • Polycystic Kidney Diseases (pathology)
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: