HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post‑conditioning.

Abstract
Ischemic post‑conditioning (IPO) and diazoxide post‑conditioning (DPO) has been proven to reduce myocardial ischemia reperfusion injury (MIRI); however, the mechanisms of IPO/DPO are still not clear. The present study aimed to investigate whether mitochondrial ATP‑sensitive potassium channels (mitoKATP) channels are activated by IPO/DPO, which may further activate the hypoxia inducible factor 1/hypoxic response element (HIF‑1/HRE) pathway to mitigate MIRI. Using a Langendorff perfusion device, healthy male (250‑300 g) Sprague Dawley rat hearts were randomly divided into the following groups. Group N was aerobically perfused with K‑H solution for 120 min. Group ischaemia/reperfusion (I/R) was aerobically perfused for 20 min, then subjected to 40 min hypoxia plus 60 min reperfusion. Group IPO was treated like the I/R group, but with 10 sec of hypoxia plus 10 sec of reperfusion for six rounds before reperfusion. Group DPO was exposed to 50 µM diazoxide for 5 min before reperfusion and otherwise treated the same as group I/R. In groups IPO+5‑hydroxydecanoic acid (5HD), DPO+5HD and I/R+5HD, exposure to 100 µM 5HD (a mitoKATP channel specific blocker) for 5 min before reperfusion as described for groups IPO, DPO and I/R, respectively. In groups IPO+2‑methoxyestradiol (2ME2), DPO+2ME2 and I/R+2ME2, exposure to 2 µM 2ME2 (a HIF‑1α specific blocker) for 10 min before reperfusion as described for groups IPO, DPO and I/R respectively. Cardiac hemodynamics, myocardial injury and the expression of HIF‑1/HRE pathway [HIF‑1α, heme oxygenase (HO‑1), inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF)] were detected in each group. The infarct size and mitochondrial Flameng scores of groups IPO/DPO were significantly decreased compared with the I/R group (P<0.05), but the myocardial protective effects of IPO/DPO could be eliminated by 5HD or 2ME2 (P<0.05). In addition, IPO/DPO could increase the mRNA expression of HIF‑1α and the downstream factors of the HIF‑1/HRE pathway (the mRNA and protein expression of HO‑1, iNOS and VEGF; P<0.05). However, the myocardial protective effects and the activation the HIF‑1/HRE pathway mediated by IPO/DPO could be eliminated by 5HD or 2ME2 (P<0.05). Therefore, the activation of the HIF‑1/HRE pathway by opening mitoKATP channels may work with the mechanism of IPO/DPO in reducing MIRI.
AuthorsJin Li, Wenjing Zhou, Wei Chen, Haiying Wang, Yu Zhang, Tian Yu
JournalMolecular medicine reports (Mol Med Rep) Vol. 21 Issue 3 Pg. 1527-1536 (03 2020) ISSN: 1791-3004 [Electronic] Greece
PMID32016463 (Publication Type: Journal Article)
Chemical References
  • Biomarkers
  • Hypoxia-Inducible Factor 1
Topics
  • Animals
  • Biomarkers
  • Biopsy
  • Disease Models, Animal
  • Disease Susceptibility
  • Hypoxia (genetics, metabolism)
  • Hypoxia-Inducible Factor 1 (genetics, metabolism)
  • Ischemic Postconditioning
  • Male
  • Mitochondria, Heart (genetics, metabolism)
  • Myocardial Reperfusion Injury (etiology, metabolism)
  • Myocardium (metabolism, pathology)
  • Rats
  • Response Elements
  • Signal Transduction

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: