HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway.

AbstractBACKGROUND:
Misfolding and aggregation of the presynaptic protein alpha-synuclein (αsyn) is a hallmark of Parkinson's disease (PD) and related synucleinopathies. Although predominantly localized in the cytosol, a body of evidence has shown that αsyn localizes to mitochondria and contributes to the disruption of key mitochondrial processes. Mitochondrial dysfunction is central to the progression of PD and mutations in mitochondrial-associated proteins are found in familial cases of PD. The sirtuins are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes that play a broad role in cellular metabolism and aging. Interestingly, mitochondrial sirtuin 3 (SIRT3) plays a major role in maintaining mitochondrial function and preventing oxidative stress, and is downregulated in aging and age-associated diseases such as neurodegenerative disorders. Herein, we hypothesize that αsyn is associated with decreased SIRT3 levels contributing to impaired mitochondrial dynamics and biogenesis in PD.
METHODS:
The level of mitochondrial SIRT3 was assessed in cells expressing oligomeric αsyn within the cytosolic and mitochondrial-enriched fractions. Mitochondrial integrity, respiration, and health were examined using several markers of mitochondrial dynamics and stress response and by measuring the rate of oxygen consumption (OCR). Our findings were validated in a rodent model of PD as well as in human post-mortem Lewy body disease (LBD) brain tissue.
RESULTS:
Here, we demonstrate that αsyn associates with mitochondria and induces a decrease in mitochondrial SIRT3 levels and mitochondrial biogenesis. We show that SIRT3 downregulation is accompanied by decreased phosphorylation of AMPK and cAMP-response element binding protein (CREB), as well as increased phosphorylation of dynamin-related protein 1 (DRP1), indicative of impaired mitochondrial dynamics. OCR was significantly decreased suggesting a mitochondria respiratory deficit. Interestingly treatment with AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) restores SIRT3 expression, improves mitochondrial function, and decreases αsyn oligomer formation in a SIRT3-dependent manner.
CONCLUSIONS:
Together, our findings suggest that pharmacologically increasing SIRT3 levels can counteract αsyn-induced mitochondrial dysfunction by reducing αsyn oligomers and normalizing mitochondrial bioenergetics. These data support a protective role for SIRT3 in PD-associated pathways and contribute significant mechanistic insight into the interplay of SIRT3 and αsyn.
AuthorsJae-Hyeon Park, Jeremy D Burgess, Ayman H Faroqi, Natasha N DeMeo, Fabienne C Fiesel, Wolfdieter Springer, Marion Delenclos, Pamela J McLean
JournalMolecular neurodegeneration (Mol Neurodegener) Vol. 15 Issue 1 Pg. 5 (01 13 2020) ISSN: 1750-1326 [Electronic] England
PMID31931835 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • alpha-Synuclein
  • Sirtuin 3
Topics
  • Aged
  • Animals
  • Female
  • Humans
  • Male
  • Mice
  • Middle Aged
  • Mitochondria (metabolism, pathology)
  • Parkinson Disease (metabolism, pathology)
  • Rats
  • Rats, Sprague-Dawley
  • Sirtuin 3 (metabolism)
  • alpha-Synuclein (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: