HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Encephalopathy induced by Alzheimer brain inoculation in a non-human primate.

Abstract
Alzheimer's disease is characterized by cognitive alterations, cerebral atrophy and neuropathological lesions including neuronal loss, accumulation of misfolded and aggregated β-amyloid peptides (Aβ) and tau proteins. Iatrogenic induction of Aβ is suspected in patients exposed to pituitary-derived hormones, dural grafts, or surgical instruments, presumably contaminated with Aβ. Induction of Aβ and tau lesions has been demonstrated in transgenic mice after contamination with Alzheimer's disease brain homogenates, with very limited functional consequences. Unlike rodents, primates naturally express Aβ or tau under normal conditions and attempts to transmit Alzheimer pathology to primates have been made for decades. However, none of earlier studies performed any detailed functional assessments. For the first time we demonstrate long term memory and learning impairments in a non-human primate (Microcebus murinus) following intracerebral injections with Alzheimer human brain extracts. Animals inoculated with Alzheimer brain homogenates displayed progressive cognitive impairments (clinical tests assessing cognitive and motor functions), modifications of neuronal activity (detected by electroencephalography), widespread and progressive cerebral atrophy (in vivo MRI assessing cerebral volume loss using automated voxel-based analysis), neuronal loss in the hippocampus and entorhinal cortex (post mortem stereology). They displayed parenchymal and vascular Aβ depositions and tau lesions for some of them, in regions close to the inoculation sites. Although these lesions were sparse, they were never detected in control animals. Tau-positive animals had the lowest performances in a memory task and displayed the greatest neuronal loss. Our study is timely and important as it is the first one to highlight neuronal and clinical dysfunction following inoculation of Alzheimer's disease brain homogenates in a primate. Clinical signs in a chronic disease such as Alzheimer take a long time to be detectable. Documentation of clinical deterioration and/or dysfunction following intracerebral inoculations with Alzheimer human brain extracts could lead to important new insights about Alzheimer initiation processes.
AuthorsCharlotte Gary, Suzanne Lam, Anne-Sophie Hérard, James E Koch, Fanny Petit, Pauline Gipchtein, Stephen J Sawiak, Raphaëlle Caillierez, Sabiha Eddarkaoui, Morvane Colin, Fabienne Aujard, Jean-Philippe Deslys, French Neuropathology Network, Emmanuel Brouillet, Luc Buée, Emmanuel E Comoy, Fabien Pifferi, Jean-Luc Picq, Marc Dhenain
JournalActa neuropathologica communications (Acta Neuropathol Commun) Vol. 7 Issue 1 Pg. 126 (09 04 2019) ISSN: 2051-5960 [Electronic] England
PMID31481130 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Topics
  • Alzheimer Disease (diagnostic imaging, genetics, pathology)
  • Animals
  • Brain (diagnostic imaging, pathology)
  • Brain Diseases (diagnostic imaging, genetics, pathology)
  • Cheirogaleidae
  • Electroencephalography (methods)
  • Female
  • Humans
  • Magnetic Resonance Imaging (methods)
  • Male
  • Mice
  • Mice, Transgenic
  • Primates
  • Species Specificity

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: