HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Protective effect of Xin-Ji-Er-Kang on cardiovascular remodeling in high salt-induced hypertensive mice.

Abstract
The aim of the present study was to investigate the effects of Xin-Ji-Er-Kang (XJEK) on high salt-induced hypertensive mice. Mice with high-salt diet-induced hypertension were divided into four groups: Control (standard diet alone for 8 weeks), model (diet containing 8% NaCl for 8 weeks and intragastric administration of distilled water for the last 4 weeks), XJEK + high-salt-treated (diet containing 8% NaCl for 8 weeks and intragastric administration of XJEK for the last 4 weeks) and irbesartan + high-salt-treated (diet containing 8% NaCl for 8 weeks with intragastric administration of irbesartan for the last 4 weeks). The hemodynamic index and cardiac pathological changes in the hypertensive mice were then examined. An aortic ring apparatus was used to detect acetylcholine-dependent endothelium relaxation function. Colorimetric analysis was applied to determine serum nitric oxide (NO), superoxide dismutase activity and malondialdehyde content; ELISA was employed to measure brain natriuretic peptide, serum angiotensin II (Ang II), endothelin-1 content and aldosterone; and immunohistochemistry was used to detect the expression of endothelial nitric oxide synthase (eNOS), interleukin (IL)-1β, IL-10 and tumor necrosis factor (TNF)-α in cardiac tissues. XJEK improved the heart systolic and diastolic function, ameliorated hemodynamic parameters and cardiovascular remodeling indices, blunted the cardiac pathological changes and improved endothelial dysfunction (ED) via boosting eNOS activity, promoting NO bioavailability and decreasing serum Ang II content. Furthermore, treatment with XJEK inhibited the increase of IL-1β and TNF-α expression and the decrease of IL-10 expression in cardiac tissues, and ameliorated oxidative stress status. Therefore, XJEK exerted protective effects against high salt-induced hypertension and cardiovascular remodeling in mice via improving ED, restoring pro- and anti-inflammatory factor balance and decreasing oxidative stress.
AuthorsGuangyao Huang, Pan Cheng, Ling Ding, Li Wang, Juan Hu, Yongxue Zhang, Guowei Cai, Meiling Chen, Aizong Shen, Shan Gao
JournalExperimental and therapeutic medicine (Exp Ther Med) Vol. 17 Issue 3 Pg. 1551-1562 (Mar 2019) ISSN: 1792-0981 [Print] Greece
PMID30783421 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: