HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Harnessing the layer-by-layer assembly technique to design biomaterials vaccines for immune modulation in translational applications.

Abstract
The existence of challenging diseases such as cancers, HIV and Zika requires developing new vaccines that can generate tunable and robust immune responses against the diseases. Biomaterials-based techniques have been broadly explored for designing vaccines that can produce controllable and potent immunity. Among the existing biomaterials-based strategies, the layer-by-layer (LbL) assembly technique is remarkably attractive in vaccine design due to its unique features such as programmed and versatile cargo loading, cargo protection, co-delivery, juxtaposing of immune signals, etc. In this work, we reviewed the existing LbL-based vaccine design techniques for translational applications. Specifically, we discussed nanovaccines constructed by coating polyelectrolyte multilayers (PEMs) on nanoparticles, microcapsule vaccines assembled from PEMs, polyplex/complex vaccines condensed from charged materials and microneedle vaccines deposited with PEMs, highlighting the employment of these techniques to promote immunity against diseases ranging from cancers to infectious and autoimmune diseases (i.e., HIV, influenza, multiple sclerosis, etc.). Additionally, the review specifically emphasized using LbL-based vaccine technologies for tuning the cellular and molecular pathways, demonstrating the unique advantages presented by these vaccination strategies. These studies showed the versatility and potency of using LbL-based techniques for designing the next generation of biomaterials vaccines for translational purposes.
AuthorsTan Tang , Tujun Weng , Hongxing Jia , Sida Luo , Ye Xu , Liuhe Li , Peipei Zhang
JournalBiomaterials science (Biomater Sci) Vol. 7 Issue 3 Pg. 715-732 (Feb 26 2019) ISSN: 2047-4849 [Electronic] England
PMID30762040 (Publication Type: Journal Article, Review)
Chemical References
  • Biocompatible Materials
  • Capsules
  • Peptides
  • Polyelectrolytes
  • Vaccines
Topics
  • Autoimmune Diseases (immunology, prevention & control)
  • Biocompatible Materials (chemistry, therapeutic use)
  • Capsules (chemistry)
  • Humans
  • Immunomodulation
  • Nanoparticles (chemistry)
  • Neoplasms (immunology, therapy)
  • Peptides (chemistry, immunology)
  • Polyelectrolytes (chemistry)
  • Vaccines (immunology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: