HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A high-throughput fluorescence polarization assay for discovering inhibitors targeting the DNA-binding domain of signal transducer and activator of transcription 3 (STAT3).

Abstract
Anti-cancer drug discovery efforts to directly inhibit the signal transducer and activator of transcription 3 (STAT3) have been active for over a decade following the discovery that 70% of cancers exhibit elevated STAT3 activity. The majority of research has focused on attenuating STAT3 activity through preventing homo-dimerization by targeting the SH2 or transcriptional activation domains. Such dimerization inhibitors have not yet reached the market. However, an alternative strategy focussed on preventing STAT3 DNA-binding through targeting the DNA-binding domain (DBD) offers new drug design opportunities. Currently, only EMSA and ELISA-based methods have been implemented with suitable reliability to characterize STAT3 DBD inhibitors. Herein, we present a new orthogonal, fluorescence polarization (FP) assay suitable for high-throughput screening of molecules. This assay, using a STAT3127-688 construct, was developed and optimized to screen molecules that attenuate the STAT3:DNA association with good reliability (Z' value > 0.6) and a significant contrast (signal-to-noise ratio > 15.0) at equilibrium. The assay system was stable over a 48 hour period. Significantly, the assay is homogeneous and simple to implement for high-throughput screening compared to EMSA and ELISA. Overall, this FP assay offers a new way to identify and characterize novel molecules that inhibit STAT3:DNA association.
AuthorsPo-Chang Shih, Yiwen Yang, Gary N Parkinson, Andrew Wilderspin, Geoffrey Wells
JournalOncotarget (Oncotarget) Vol. 9 Issue 66 Pg. 32690-32701 (Aug 24 2018) ISSN: 1949-2553 [Electronic] United States
PMID30220975 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: