HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Development of novel amino-quinoline-5,8-dione derivatives as NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities.

Abstract
Fourteen novel amino-quinoline-5,8-dione derivatives (6a-h and 7a-h) were designed and synthesized by coupling different alkyl- or aryl-amino fragments at the C6- or C7-position of quinoline-5,8-dione. All target compounds showed antiproliferative potency in the low micromolar range in both drug sensitive HeLaS3 and multidrug resistant KB-vin cell lines. Compounds 6h, 6d, 7a, and 7d exhibited more potent antiproliferative effects than the other compounds. Especially, compounds 6d and 7d displayed NQO1-dependent cytotoxicity and competitive NQO1 inhibitory effects in both drug sensitive HeLaS3 and multidrug resistant KB-vin cell lines. Furthermore, compounds 6h, 6d, 7a, and 7d induced a dose-dependent lethal mitochondrial dysfunction in both drug sensitive HeLaS3 and multidrug resistant KB-vin cells by increasing intracellular reactive oxygen species (ROS) levels. Notably, compound 7d selectively inhibited cancer cells, but not non-tumor liver cell proliferation in vitro, and significantly triggered HeLaS3 cell apoptosis by regulating apoptotic proteins of Bcl-2, Bax, and cleaved caspase-3 in a dose-dependent manner. Our findings suggest that these novel C6- or C7-substituted amino-quinoline-5,8-dione derivatives, such as 7d, could be further developed in the future as potent and selective antitumor agents to potentially circumvent multi-drug resistance (MDR).
AuthorsYong Ling, Qiu-Xing Yang, Yu-Ning Teng, Shi Chen, Wei-Jie Gao, Jing Guo, Pei-Ling Hsu, Yue Liu, Susan L Morris-Natschke, Chin-Chuan Hung, Kuo-Hsiung Lee
JournalEuropean journal of medicinal chemistry (Eur J Med Chem) Vol. 154 Pg. 199-209 (Jun 25 2018) ISSN: 1768-3254 [Electronic] France
PMID29803003 (Publication Type: Journal Article)
CopyrightCopyright © 2018 Elsevier Masson SAS. All rights reserved.
Chemical References
  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Quinolones
  • NAD(P)H Dehydrogenase (Quinone)
  • NQO1 protein, human
Topics
  • Antineoplastic Agents (chemical synthesis, chemistry, pharmacology)
  • Cell Line, Tumor
  • Cell Proliferation (drug effects)
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Enzyme Inhibitors (chemical synthesis, chemistry, pharmacology)
  • Humans
  • Molecular Structure
  • NAD(P)H Dehydrogenase (Quinone) (antagonists & inhibitors, metabolism)
  • Quinolones (chemical synthesis, chemistry, pharmacology)
  • Structure-Activity Relationship

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: