HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The nutraceutical benefits of subfractions of Abelmoschus esculentus in treating type 2 diabetes mellitus.

Abstract
Abelmoschus esculentus (AE), a commonly consumed vegetable, is well-known for its anti-hyperglycemic effects. However, few scientific reports have identified its targets because mucilage increases the difficulty of manipulation. We recently reported extraction steps to obtain subfractions of AE, which were found to attenuate the adverse effects of high glucose and fatty acid in vitro. In this study, we used modified extraction steps and type 2 diabetic rats to explore whether AE subfractions can improve the metabolic disturbances caused by insulin resistance in vivo. AE subfractions (F1, F2, and FR) were prepared. The type 2 diabetes model was induced by feeding male Sprague-Dawley rats with a high-fat diet and injecting them with 35 mg/kgbw streptozotocin when their body weight reached 475 ± 15 g. After a hyperglycemic status had been confirmed, the rats were tube-fed with or without different doses of AE subfractions. Serum glucose, lipid markers, insulin, HbA1c and HOMA-IR were measured in the following 12 weeks. Serum glucose promptly increased and insulin resistance was noted in the diabetic rats (glucose: 360-500 mg/dl, HOMA-IR 9.8-13.8). F2, rich in polysaccharides and carbohydrates, was most effective in attenuating hyperglycemia and insulin resistance (glucose: 200 mg/dl; HOMA-IR: 5.3) and especially HbA1C (from 8.0% to 6.5%). All of the AE subfractions lowered the level of triglycerides and free fatty acid, but not the level of total cholesterol. FR significantly increased the high-density lipoprotein/low-density lipoprotein ratio, indicating its benefits for lipoprotein profiles. While F2 and FR were associated with weight gain, F1 possessed an anti-obese effect. In conclusion, whether it is consumed as a vegetable or as a nutraceutical, AE has the potential to be an adjuvant therapy for diabetes. AE subfractions could be developed individually and deserve further investigation.
AuthorsChien-Ning Huang, Chau-Jong Wang, Chih-Li Lin, Hui-Ting Lin, Chiung-Huei Peng
JournalPloS one (PLoS One) Vol. 12 Issue 12 Pg. e0189065 ( 2017) ISSN: 1932-6203 [Electronic] United States
PMID29216237 (Publication Type: Journal Article)
Chemical References
  • Glycated Hemoglobin A
  • Plant Extracts
Topics
  • Abelmoschus (chemistry)
  • Animals
  • Diabetes Mellitus, Type 2 (complications, drug therapy)
  • Dietary Supplements
  • Dyslipidemias (drug therapy)
  • Glycated Hemoglobin (antagonists & inhibitors, biosynthesis)
  • Kidney (drug effects)
  • Liver (drug effects)
  • Male
  • Plant Extracts (adverse effects, therapeutic use)
  • Rats
  • Rats, Sprague-Dawley

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: