HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Maximizing Synergistic Activity When Combining RNAi and Platinum-Based Anticancer Agents.

Abstract
RNAi approaches have been widely combined with platinum-based anticancer agents to elucidate cellular responses and to target gene products that mediate acquired resistance. Recent work has demonstrated that platination of siRNA prior to transfection may negatively influence RNAi efficiency based on the position and sequence of its guanosine nucleosides. Here, we used detailed spectroscopic characterization to demonstrate rapid formation of Pt-guanosine adducts within 30 min after coincubation of oxaliplatin [OxaPt(II)] or cisplatin [CisPt(II)] with either guanosine monophosphate or B-cell lymphoma 2 (BCL-2) siRNA. After 3 h of exposure to these platinum(II) agents, >50% of BCL-2 siRNA transcripts were platinated and unable to effectively suppress mRNA levels. Platinum(IV) analogues [OxaPt(IV) or CisPt(IV)] did not form Pt-siRNA adducts but did display decreased in vitro uptake and reduced potency. To overcome these challenges, we utilized biodegradable methoxyl-poly(ethylene glycol)-block-poly(ε-caprolactone)-block-poly(l-lysine) (mPEG-b-PCL-b-PLL) to generate self-assembled micelles that covalently conjugated OxaPt(IV) and/or electrostatically complexed siRNA. We then compared multiple strategies by which to combine BCL-2 siRNA with either OxaPt(II) or OxaPt(IV). Overall, we determined that the concentrations of siRNA (nM) and platinum(II)-based anticancer agents (μM) that are typically used for in vitro experiments led to rapid Pt-siRNA adduct formation and ineffective RNAi. Coincorporation of BCL-2 siRNA and platinum(IV) analogues in a single micelle enabled maximal suppression of BCL-2 mRNA levels (to <10% of baseline), augmented the intracellular levels of platinum (by ∼4×) and the numbers of resultant Pt-DNA adducts (by >5×), increased the cellular fractions that underwent apoptosis (by ∼4×), and enhanced the in vitro antiproliferative activity of the corresponding platinum(II) agent (by 10-100×, depending on the cancer cell line). When combining RNAi and platinum-based anticancer agents, this generalizable strategy may be adopted to maximize synergy during screening or for therapeutic delivery.
AuthorsHaihua Xiao, Ruogu Qi, Ting Li, Samuel G Awuah, Yaorong Zheng, Wei Wei, Xiang Kang, Haiqin Song, Yongheng Wang, Yingjie Yu, Molly A Bird, Xiabin Jing, Michael B Yaffe, Michael J Birrer, P Peter Ghoroghchian
JournalJournal of the American Chemical Society (J Am Chem Soc) Vol. 139 Issue 8 Pg. 3033-3044 (03 01 2017) ISSN: 1520-5126 [Electronic] United States
PMID28166401 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents
  • Micelles
  • Organoplatinum Compounds
Topics
  • Antineoplastic Agents (chemistry, pharmacology)
  • Apoptosis (drug effects)
  • Cell Proliferation (drug effects)
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • MCF-7 Cells
  • Micelles
  • Molecular Structure
  • Organoplatinum Compounds (chemistry, pharmacology)
  • RNA Interference
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: