HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Activating PPARα prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts.

AbstractRATIONALE:
Post-ischemic contractile dysfunction is a contributor to morbidity and mortality after the surgical correction of congenital heart defects in neonatal patients. Pre-existing hypertrophy in the newborn heart can exacerbate these ischemic injuries, which may partly be due to a decreased energy supply to the heart resulting from low fatty acid β-oxidation rates.
OBJECTIVE:
We determined whether stimulating fatty acid β-oxidation with GW7647, a peroxisome proliferator-activated receptor-α (PPARα) activator, would improve cardiac energy production and post-ischemic functional recovery in neonatal rabbit hearts subjected to volume overload-induced cardiac hypertrophy.
METHODS AND RESULTS:
Volume-overload cardiac hypertrophy was produced in 7-day-old rabbits via an aorto-caval shunt, after which, the rabbits were treated with or without GW7647 (3 mg/kg per day) for 14 days. Biventricular working hearts were subjected to 35 minutes of aerobic perfusion, 25 minutes of global no-flow ischemia, and 30 minutes of aerobic reperfusion. GW7647 treatment did not prevent the development of cardiac hypertrophy, but did prevent the decline in left ventricular ejection fraction in vivo. GW7647 treatment increased cardiac fatty acid β-oxidation rates before and after ischemia, which resulted in a significant increase in overall ATP production and an improved in vitro post-ischemic functional recovery. A decrease in post-ischemic proton production and endoplasmic reticulum stress, as well as an activation of sarcoplasmic reticulum calcium ATPase isoform 2 and citrate synthase, was evident in GW7647-treated hearts.
CONCLUSIONS:
Stimulating fatty acid β-oxidation in neonatal hearts may present a novel cardioprotective intervention to limit post-ischemic contractile dysfunction.
AuthorsVictoria H Lam, Liyan Zhang, Alda Huqi, Arata Fukushima, Brandon A Tanner, Arzu Onay-Besikci, Wendy Keung, Paul F Kantor, Jagdip S Jaswal, Ivan M Rebeyka, Gary D Lopaschuk
JournalCirculation research (Circ Res) Vol. 117 Issue 1 Pg. 41-51 (Jun 19 2015) ISSN: 1524-4571 [Electronic] United States
PMID25977309 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2015 American Heart Association, Inc.
Chemical References
  • Butyrates
  • Fatty Acids
  • GW 7647
  • PPAR alpha
  • Phenylurea Compounds
  • Adenosine Triphosphate
  • ATP Citrate (pro-S)-Lyase
  • Calcium-Transporting ATPases
Topics
  • ATP Citrate (pro-S)-Lyase (metabolism)
  • Adenosine Triphosphate (biosynthesis)
  • Animals
  • Animals, Newborn
  • Butyrates (pharmacology, therapeutic use)
  • Calcium-Transporting ATPases (metabolism)
  • Cardiomegaly (physiopathology, prevention & control)
  • Citric Acid Cycle (drug effects)
  • Disease Models, Animal
  • Drug Evaluation, Preclinical
  • Endoplasmic Reticulum Stress (drug effects)
  • Enzyme Activation (drug effects)
  • Fatty Acids (metabolism)
  • Female
  • Glycolysis
  • Heart (drug effects)
  • Inflammation
  • Male
  • Mitochondria, Heart (drug effects, metabolism)
  • Myocardial Contraction (drug effects, physiology)
  • Myocardial Ischemia (drug therapy)
  • Myocardium (metabolism)
  • PPAR alpha (agonists, physiology)
  • Phenylurea Compounds (pharmacology, therapeutic use)
  • Rabbits
  • Sarcoplasmic Reticulum (enzymology)
  • Stroke Volume (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: