HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Imaging C-Fos Gene Expression in Burns Using Lipid Coated Spion Nanoparticles.

Abstract
MR imaging of gene transcription is important as it should enable the non-invasive detection of mRNA alterations in disease. A range of MRI methods have been proposed for in vivo molecular imaging of cells based on the use of ultra-small super-paramagnetic iron oxide (USPIO) nanoparticles and related susceptibility weighted imaging methods. Although immunohistochemistry can robustly differentiate the expression of protein variants, there is currently no direct gene assay technique that is capable of differentiating established to differentiate the induction profiles of c-Fos mRNA in vivo. To visualize the differential FosB gene expression profile in vivo after burn trauma, we developed MR probes that link the T2* contrast agent [superparamagnetic iron oxide nanoparticles (SPION)] with an oligodeoxynucleotide (ODN) sequence complementary to FosB mRNA to visualize endogenous mRNA targets via in vivo hybridization. The presence of this SPION-ODN probe in cells results in localized signal reduction in T2*-weighted MR images, in which the rate of signal reduction (R2*) reflects the regional iron concentration at different stages of amphetamine (AMPH) exposure in living mouse tissue. Our aim was to produce a superior contrast agent that can be administered using systemic as opposed to local administration and which will target and accumulate at sites of burn injury. Specifically, we developed and evaluated a PEGylated lipid coated MR probe with ultra-small super-paramagnetic iron oxide nanoparticles (USPION, a T2 susceptibility agent) coated with cationic fusogenic lipids, used for cell transfection and gene delivery and covalently linked to a phosphorothioate modified oligodeoxynucleotide (sODN) complementary to c-Fos mRNA (SPION-cFos) and used the agent to image mice with leg burns. Our study demonstrated the feasibility of monitoring burn injury using MR imaging of c-Fos transcription in vivo, in a clinically relevant mouse model of burn injury for the first time.
AuthorsAristarchos Papagiannaros, Valeria Righi, George G Day, Laurence G Rahme, Philip K Liu, Alan J Fischman, Ronald G Tompkins, A Aria Tzika
JournalAdvances in molecular imaging (Adv J Mol Imaging) Vol. 2 Issue 4 Pg. 31-37 (Oct 2012) ISSN: 2161-6728 [Print] United States
PMID24995147 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: