HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor.

Abstract
Stimulation of the beta-adrenergic system is important in the pathological response to sustained cardiac stress, forming the rationale for the use of beta-blockers in heart failure. The beta3-adrenoreceptor (AR) is thought to couple to the inhibitory G-protein, G(i), with downstream signaling through nitric oxide, although its role in the heart remains controversial. In this study, we tested whether lack of beta3-AR influences the myocardial response to pressure-overload. Baseline echocardiography in mice lacking beta3-AR (beta3(-/-)) compared to wild type (WT) showed mild LV hypertrophy at 8 weeks that worsened as they aged. beta3(-/-) mice had much greater mortality after transverse aortic constriction (TAC) than WT controls. By 3 weeks of TAC, systolic function was worse. After 9 weeks of TAC, beta3(-/-) mice also had greater LV dilation, myocyte hypertrophy and enhanced fibrosis. NOS activity declined in beta3(-/-)TAC hearts after 9 weeks, and total and NOS-dependent superoxide rose, indicating heightened oxidative stress and NOS uncoupling. The level of eNOS phosphorylation in beta3(-/-)TAC hearts was diminished, and nNOS and iNOS expression levels were increased. GTP cyclohydrolase-1 expression was reduced, although total BH4 levels were not depleted. 3 weeks of BH4 treatment rescued beta3(-/-) mice from worsened remodeling after TAC, and lowered NOS-dependent superoxide. Thus, lack of beta3-AR signaling exacerbates cardiac pressure-overload induced remodeling and enhances NOS uncoupling and consequent oxidant stress, all of which can be rescued with exogenous BH4. These data suggest a cardioprotective role for the beta3-AR in modulating oxidative stress and adverse remodeling in the failing heart.
AuthorsAn L Moens, Jordan S Leyton-Mange, Xiaolin Niu, Ronghua Yang, Oscar Cingolani, Elisabeth K Arkenbout, Hunter C Champion, Djahida Bedja, Kathleen L Gabrielson, Juan Chen, Yong Xia, Ashley B Hale, Keith M Channon, Marc K Halushka, Norman Barker, Floris L Wuyts, Pawel M Kaminski, Michael S Wolin, David A Kass, Lili A Barouch
JournalJournal of molecular and cellular cardiology (J Mol Cell Cardiol) Vol. 47 Issue 5 Pg. 576-85 (Nov 2009) ISSN: 1095-8584 [Electronic] England
PMID19766235 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Receptors, Adrenergic, beta-3
  • Superoxides
  • Biopterins
  • Nitric Oxide Synthase
  • sapropterin
Topics
  • Age Factors
  • Animals
  • Biopterins (analogs & derivatives, therapeutic use)
  • Blotting, Western
  • Cardiomyopathies (genetics, pathology)
  • Echocardiography
  • Hypertrophy, Left Ventricular (drug therapy, genetics, pathology)
  • Male
  • Mice
  • Mice, Mutant Strains
  • Nitric Oxide Synthase (metabolism)
  • Oxidative Stress (genetics, physiology)
  • Receptors, Adrenergic, beta-3 (genetics, physiology)
  • Superoxides (metabolism)
  • Vasoconstriction (physiology)
  • Ventricular Remodeling (drug effects, genetics, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: