HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection.

Abstract
The Yersinia plasmid-encoded Yop virulon enables extracellular adhering bacteria to deliver toxic effector proteins inside their target cells. It includes a type III secretion system (Ysc), at least two translocator proteins (YopB, YopD), and a set of intracellular Yop effectors (YopE, YopH, YopO, YopM, and YopP). Infection of macrophages with a wild-type strain leads to low levels of tumor necrosis factor alpha (TNF-alpha) release compared to infection with plasmid-cured strains, suggesting that the virulence plasmid encodes a factor impairing the normal TNF-alpha response of infected macrophages. This effect is correlated with the inhibition of the macrophage mitogen-activated protein kinase (MAPK) activities. To identify the Yop protein responsible for the suppression of TNF-alpha release, we infected J774A.1 and PU5-1.8 macrophages with a battery of knockout Yersinia enterocolitica mutants and we quantified the TNF-alpha released. Mutants affected in secretion (yscN), in translocation (yopB and yopD), or in synthesis of all the known Yop effectors (yopH, yopO, yopP, yopE, and yopM polymutants) were unable to block the TNF-alpha response of the macrophages. In contrast, single yopE, yopH, yopO, and yopM mutants behaved like the wild-type strain. A yopP mutant elicited elevated TNF-alpha release, and complementation of the yopP mutant or the yop effector polymutant strain with yopP alone led to a drop in TNF-alpha release. In addition, YopP was also responsible for the inhibition of the extracellular signal-regulated kinase2 (ERK2) and p38 MAPK activities. These results show that YopP is the Yop effector responsible for the Yersinia-induced suppression of TNF-alpha release by infected macrophages.
AuthorsA Boland, G R Cornelis
JournalInfection and immunity (Infect Immun) Vol. 66 Issue 5 Pg. 1878-84 (May 1998) ISSN: 0019-9567 [Print] United States
PMID9573064 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Bacterial Proteins
  • Tumor Necrosis Factor-alpha
  • YopP protein, Yersinia
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 1
Topics
  • Animals
  • Bacterial Proteins (physiology)
  • Calcium-Calmodulin-Dependent Protein Kinases (metabolism)
  • Cell Line
  • Macrophages (metabolism, microbiology)
  • Mice
  • Mitogen-Activated Protein Kinase 1
  • Tumor Necrosis Factor-alpha (metabolism)
  • Yersinia enterocolitica (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: