HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effects of Na-K-2Cl cotransport inhibition on myocardial Na and Ca during ischemia and reperfusion.

Abstract
In the context of the "pump-leak" hypothesis (37), changes in myocardial intracellular Na (Nai) during ischemia and reperfusion have historically been interpreted to be the result of changes in Na efflux via the Na-K pump. We investigated the alternative hypothesis that changes in Nai during ischemia are the result of changes in the Na "leak" rather than changes in the pump. More specifically, we hypothesize that the increase in Nai during ischemia is in part the result of increased Na uptake mediated by Na/H exchange. Furthermore, we present data consistent with the interpretation that the Na-K-2Cl cotransporter is active (or, alternatively, displaced from equilibrium) during ischemia and may contribute an additional Na efflux pathway during reperfusion. Thus inhibition of Na efflux via Na-K-2Cl cotransport during ischemia and reperfusion could result in increased Nai and therefore decreased force driving Ca efflux via Na/Ca exchange and ultimately increased intracellular Ca concentration ([Ca]i). Nai (in meq/kg dry wt) and [Ca]i (in nM) were measured in isolated Langendorff-perfused rabbit hearts using nuclear magnetic resonance spectroscopy. Except, during the 65 min of ischemia, hearts were perfused with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-buffered Krebs-Henseleit solution equilibrated with 100% O2 at 23 degrees C and pH 7.4 +/- 0.05. During ischemia, Nai rose from 16.6 +/- 0.3 to 62.9 +/- 5.1 (delta Nai approximately 46) meq/kg dry wt and decreased during subsequent reperfusion (mean +/- SE, n = 3 hearts). To measure Na uptake ("leak") in the absence of efflux via the Na-K pump, in all of the protocols described below, the perfusate was nominally K-free solution containing 1 mM ouabain for 10 min before ischemia and during the 30-min reperfusion. After K-free perfusion, Nai rose from 20.2 +/- 0.5 to 79.1 +/- 5.3 (delta Nai approximately 59) meq/kg dry wt (n = 3) during ischemia and decreased during K-free reperfusion. When amiloride (1 mM) was added to the K-free perfusate to inhibit Na/H exchange, Nai rose from 16.3 +/- 0.9 to 44.7 +/- 5.1 (delta Nai approximately 28) meq/kg dry wt (n = 3) during ischemia; i.e., amiloride decreased Na uptake. When bumetanide (20 microM) was added to the nominally K-free perfusate to inhibit Na-K-2Cl contransport, Nai rose from 22.5 +/- 3.9 to 83.8 +/- 13.9 (delta Nai approximately 61 meq/kg dry wt (n = 3) during ischemia and did not decrease during reperfusion; i.e., bumetanide inhibited Na recovery during reperfusion (P < 0.05 compared with bumetanide free). For the same protocol, the presence of bumetanide resulted in increased [Ca]i during ischemia and reperfusion (P < 0.05); these increases in [Ca]i are interpreted to be the result of increased Nai. Thus the results are consistent with the hypotheses.
AuthorsS E Anderson, C Z Dickinson, H Liu, P M Cala
JournalThe American journal of physiology (Am J Physiol) Vol. 270 Issue 2 Pt 1 Pg. C608-18 (Feb 1996) ISSN: 0002-9513 [Print] United States
PMID8779926 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Carrier Proteins
  • Sodium-Potassium-Chloride Symporters
  • Solutions
  • Bumetanide
  • Ouabain
  • Sodium
  • Potassium
  • Calcium
Topics
  • Animals
  • Bumetanide (pharmacology)
  • Calcium (metabolism)
  • Carrier Proteins (antagonists & inhibitors)
  • Intracellular Membranes (metabolism)
  • Myocardial Ischemia (metabolism)
  • Myocardial Reperfusion
  • Myocardium (metabolism)
  • Osmolar Concentration
  • Ouabain (pharmacology)
  • Potassium (pharmacology)
  • Rabbits
  • Sodium (metabolism)
  • Sodium-Potassium-Chloride Symporters
  • Solutions

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: