HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Utilization of glycoprotein-derived N-acetylglucosamine-L-asparagine during Enterococcus faecalis infection depends on catabolic and transport enzymes of the glycosylasparaginase locus.

Abstract
Enterococcus faecalis is a Gram-positive clinical pathogen causing severe infections. Its survival during infection depends on its ability to utilize host-derived metabolites, such as protein-deglycosylation products. We have identified in E. faecalis OG1RF a locus (ega) involved in the catabolism of the glycoamino acid N-acetylglucosamine-L-asparagine. This locus is separated into two transcription units, genes egaRP and egaGBCD1D2, respectively. RT-qPCR experiments revealed that the expression of the ega locus is regulated by the transcriptional repressor EgaR. Electromobility shift assays evidenced that N-acetylglucosamine-L-asparagine interacts directly with the EgaR protein, which leads to the transcription of the ega genes. Growth studies with egaG, egaB and egaC mutants confirmed that the encoded proteins are necessary for N-acetylglucosamine-L-asparagine catabolism. This glycoamino acid is transported and phosphorylated by a specific phosphotransferase system EIIABC components (OG1RF_10751, EgaB, EgaC) and subsequently hydrolyzed by the glycosylasparaginase EgaG, which generates aspartate and 6-P-N-acetyl-β-d-glucosaminylamine. The latter can be used as a fermentable carbon source by E. faecalis. Moreover, Galleria mellonella larvae had a significantly higher survival rate when infected with ega mutants compared to the wild-type strain, suggesting that the loss of N-acetylglucosamine-L-asparagine utilization affects enterococcal virulence.
AuthorsVictor Combret, Isabelle Rincé, Aurélie Budin-Verneuil, Cécile Muller, Josef Deutscher, Axel Hartke, Nicolas Sauvageot
JournalResearch in microbiology (Res Microbiol) Pg. 104169 (Nov 16 2023) ISSN: 1769-7123 [Electronic] France
PMID37977353 (Publication Type: Journal Article)
CopyrightCopyright © 2023 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: