HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Piperine improves levodopa availability in the 6-OHDA-lesioned rat model of Parkinson's disease by suppressing gut bacterial tyrosine decarboxylase.

AbstractAIM:
Tyrosine decarboxylase (TDC) presented in the gut-associated strain Enterococcus faecalis can convert levodopa (L-dopa) into dopamine (DA), and its increased abundance would potentially minimize the availability and efficacy of L-dopa. However, the known human decarboxylase inhibitors are ineffective in this bacteria-mediated conversion. This study aims to investigate the inhibition of piperine (PIP) on L-dopa bacterial metabolism and evaluates the synergistic effect of PIP combined with L-dopa on Parkinson's disease (PD).
METHODS:
Metagenomics sequencing was adopted to determine the regulation of PIP on rat intestinal microbiota structure, especially on the relative abundance of E. faecalis. Then, the inhibitory effects of PIP on L-dopa conversion and TDC expression of E. faecalis were tested in vitro. We examined the synergetic effect of the combination of L-dopa and PIP on 6-hydroxydopamine (6-OHDA)-lesioned rats and tested the regulations of L-dopa bioavailability and brain DA level by pharmacokinetics study and MALDI-MS imaging. Finally, we evaluated the microbiota-dependent improvement effect of PIP on L-dopa availability using pseudo-germ-free and E. faecalis-transplanted rats.
RESULTS:
We found that PIP combined with L-dopa could better ameliorate the move disorders of 6-OHDA-lesioned rats by remarkably improving L-dopa availability and brain DA level than L-dopa alone, which was associated with the effect of PIP on suppressing the bacterial decarboxylation of L-dopa via effectively downregulating the abnormal high abundances of E. faecalis and TDC in 6-OHDA-lesioned rats.
CONCLUSION:
Oral administration of L-dopa combined with PIP can improve L-dopa availability and brain DA level in 6-OHDA-lesioned rats by suppressing intestinal bacterial TDC.
AuthorsXiaolu Hu, Lan Yu, Yatong Li, Xiaoxi Li, Yimeng Zhao, Lijuan Xiong, Jiaxuan Ai, Qijun Chen, Xing Wang, Xiaoqing Chen, Yinying Ba, Yaonan Wang, Xia Wu
JournalCNS neuroscience & therapeutics (CNS Neurosci Ther) (Aug 01 2023) ISSN: 1755-5949 [Electronic] England
PMID37528534 (Publication Type: Journal Article)
Copyright© 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: