HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Identification of potential inhibitor against CTX-M-3 and CTX-M-15 proteins: an in silico and in vitro study.

Abstract
Extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae infection is a serious global threat. ESBLs target 3rd generation cephalosporin antibiotics, the most commonly prescribed medicine for gram-negative bacterial infections. As bacteria are prone to develop resistance against market-available ESBL inhibitors, finding a novel and effective inhibitor has become mandatory. Among ESBL, the worldwide reported two enzymes, CTX-M-15 and CTX-M-3, are selected for the present study. CTX-M-3 protein was modeled, and two thousand phyto-compounds were virtually screened against both proteins. After filtering through docking and pharmacokinetic properties, four phyto-compounds (catechin gallate, silibinin, luteolin, uvaol) were further selected for intermolecular contact analysis and molecular dynamics (MD) simulation. MD trajectory analysis results were compared, revealing that both catechin gallate and silibinin had a stabilizing effect against both proteins. Silibinin having the lowest docking score, also displayed the lowest MIC (128 µg/mL) against the bacterial strains. Silibinin was also reported to have synergistic activity with cefotaxime and proved to have bactericidal effect. Nitrocefin assay confirmed that silibinin could inhibit beta-lactamase enzyme only in living cells, unlike clavulanic acid. Thus the present study validated the CTX-M inhibitory activity of silibinin both in silico and in vitro and suggested its promotion for further studies as a potential lead. The present study adopted a protocol through the culmination of bioinformatics and microbiological analyses, which will help future researchers identify more potential leads and design new effective drugs.Communicated by Ramaswamy H. Sarma.
AuthorsBipasa Kar, Chanakya Nath Kundu, Mahender Kumar Singh, Budheswar Dehury, Sanghamitra Pati, Debdutta Bhattacharya
JournalJournal of biomolecular structure & dynamics (J Biomol Struct Dyn) Pg. 1-17 (Mar 30 2023) ISSN: 1538-0254 [Electronic] England
PMID36995090 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: