HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Resibufogenin inhibits the malignant characteristics of multiple myeloma cells by blocking the PI3K/Akt signaling pathway.

Abstract
Resibufogenin (RBG) is an active ingredient of toad venom that also has antitumor potential. The present study aimed to investigate the role of RBG in multiple myeloma (MM) and the underlying action mechanism involving the PI3K/Akt signaling pathway. A human MM cell line, RPMI8226, was treated with RBG and/or insulin-like growth factor 1 (IGF-1; an activator of the PI3K/AKT signaling pathway). Cell viability and apoptosis were detected using Cell Counting Kit-8 and flow cytometry, respectively. Cell migration and invasion were detected using a Transwell assay. In addition, the epithelial-mesenchymal transition (EMT)-associated proteins (E-cadherin, N-cadherin and Vimentin) and the PI3K/AKT pathway-associated proteins [AKT, phosphorylated (p)-AKT, PI3K and p-PI3K] were measured using western blotting. RBG inhibited the viability, migration and invasion, and promoted the apoptosis of RPMI8226 cells in a dose-dependent manner. RBG at concentrations of 4 and 8 µM upregulated E-cadherin, and downregulated N-cadherin and Vimentin in RPMI8226 cells. RBG also decreased the protein expression of p-AKT and p-PI3K in a dose-dependent manner. In addition, the intervention of IGF-1 weakened the inhibitory effects of RBG on the malignant characteristics of MM cells. RBG-induced inhibition of EMT and the PI3K/AKT pathway were also weakened by IGF-1 treatment. In conclusion, RBG inhibited viability, migration, invasion and EMT, and promoted the apoptosis of MM cells by blocking the PI3K/AKT signaling pathway.
AuthorsYan Zhou, Zirui Hong, Keting Jin, Chenjun Lin, Jingjing Xiang, Hangping Ge, Zhiyin Zheng, Jianping Shen, Shu Deng
JournalExperimental and therapeutic medicine (Exp Ther Med) Vol. 24 Issue 1 Pg. 441 (Jul 2022) ISSN: 1792-1015 [Electronic] Greece
PMID35720619 (Publication Type: Journal Article)
CopyrightCopyright: © Zhou et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: