HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression.

AbstractBACKGROUND:
Many neurological diseases involve neuroinflammation, during which overproduction of cytokines by immune cells, especially microglia, can aggregate neuronal death. Ferroptosis is a recently discovered cell metabolism-related form of cell death and RSL3 is a well-known inducer of cell ferroptosis. Here, we aimed to investigate the effects of RSL3 in neuroinflammation and sensitivity of different type of microglia and macrophage to ferroptosis.
METHODS:
Here, we used quantitative RT-PCR analysis and ELISA analysis to analyze the production of proinflammatory cytokine production of microglia and macrophages after lipopolysaccharides (LPS) stimulation. We used CCK8, LDH, and flow cytometry analysis to evaluate the sensitivity of different microglia and macrophages to RSL3-induced ferroptosis. Western blot was used to test the activation of inflammatory signaling pathway and knockdown efficiency. SiRNA-mediated interference was conducted to knockdown GPX4 or Nrf2 in BV2 microglia. Intraperitoneal injection of LPS was performed to evaluate systemic inflammation and neuroinflammation severity in in vivo conditions.
RESULTS:
We found that ferroptosis inducer RSL3 inhibited lipopolysaccharides (LPS)-induced inflammation of microglia and peritoneal macrophages (PMs) in a cell ferroptosis-independent manner, whereas cell ferroptosis-conditioned medium significantly triggered inflammation of microglia and PMs. Different type of microglia and macrophages showed varied sensitivity to RSL3-induced ferroptosis. Mechanistically, RSL3 induced Nrf2 protein expression to inhibit RNA Polymerase II recruitment to transcription start site of proinflammatory cytokine genes to repress cytokine transcription, and protect cells from ferroptosis. Furthermore, simultaneously injection of RSL3 and Fer-1 ameliorated LPS-induced neuroinflammation in in vivo conditions.
CONCLUSIONS:
These data revealed the proinflammatory role of ferroptosis in microglia and macrophages, identified RSL3 as a novel inhibitor of LPS-induced inflammation, and uncovered the molecular regulation of microglia and macrophage sensitivity to ferroptosis. Thus, targeting ferroptosis in diseases by using RSL3 should consider both the pro-ferroptosis effect and the anti-inflammation effect to achieve optimal outcome.
AuthorsYu Cui, Zhaolong Zhang, Xin Zhou, Zhiyuan Zhao, Rui Zhao, Xiangyu Xu, Xiangyi Kong, Jinyang Ren, Xujin Yao, Qian Wen, Feifei Guo, Shengli Gao, Jiangdong Sun, Qi Wan
JournalJournal of neuroinflammation (J Neuroinflammation) Vol. 18 Issue 1 Pg. 249 (Oct 30 2021) ISSN: 1742-2094 [Electronic] England
PMID34717678 (Publication Type: Journal Article)
Copyright© 2021. The Author(s).
Chemical References
  • Carbolines
  • Inflammation Mediators
  • Lipopolysaccharides
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, mouse
  • RSL3 compound
Topics
  • Animals
  • Carbolines (pharmacology)
  • Cell Survival (drug effects, physiology)
  • Dose-Response Relationship, Drug
  • Female
  • Ferroptosis (drug effects, physiology)
  • Gene Expression
  • Inflammation Mediators (antagonists & inhibitors, metabolism)
  • Lipopolysaccharides (toxicity)
  • Macrophages (drug effects, metabolism)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microglia (drug effects, metabolism)
  • NF-E2-Related Factor 2 (biosynthesis, genetics)
  • RAW 264.7 Cells

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: