HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features.

AbstractBACKGROUND:
The critical role of antibody Fc-mediated effector functions in immune defense has been widely reported in various viral infections. These effector functions confer cellular responses through engagement with innate immune cells. The precise mechanism(s) by which immunoglobulin G (IgG) Fc domain and cognate receptors may afford protection are poorly understood, however, in the context of HIV/SHIV infections. Many different in vitro assays have been developed and utilized to measure effector functions, but the extent to which these assays capture distinct antibody activities has not been fully elucidated.
RESULTS:
In this study, six Fc-mediated effector function assays and two biophysical antibody profiling assays were performed on a common set of samples from HIV-1 infected and vaccinated subjects. Biophysical antibody profiles supported robust prediction of diverse IgG effector functions across distinct Fc-mediated effector function assays. While a number of assays showed correlated activities, supervised machine learning models indicated unique antibody features as primary contributing factors to the associated effector functions. Additional experiments established the mechanistic relevance of relationships discovered using this unbiased approach.
CONCLUSIONS:
In sum, this study provides better resolution on the diversity and complexity of effector function assays, offering a clearer perspective into this family of antibody mechanisms of action to inform future HIV-1 treatment and vaccination strategies.
AuthorsHao D Cheng, Karen G Dowell, Chris Bailey-Kellogg, Brittany A Goods, J Christopher Love, Guido Ferrari, Galit Alter, Johannes Gach, Donald N Forthal, George K Lewis, Kelli Greene, Hongmei Gao, David C Montefiori, Margaret E Ackerman
JournalRetrovirology (Retrovirology) Vol. 18 Issue 1 Pg. 35 (10 30 2021) ISSN: 1742-4690 [Electronic] England
PMID34717659 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Copyright© 2021. The Author(s).
Chemical References
  • HIV Antibodies
  • Immunoglobulin Fc Fragments
  • Immunoglobulin G
Topics
  • HIV Antibodies (chemistry, immunology)
  • HIV Infections (immunology, virology)
  • HIV-1 (immunology)
  • Humans
  • Immunoglobulin Fc Fragments (chemistry, immunology)
  • Immunoglobulin G (chemistry, immunology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: