HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Resistance to Durvalumab and Durvalumab plus Tremelimumab Is Associated with Functional STK11 Mutations in Patients with Non-Small Cell Lung Cancer and Is Reversed by STAT3 Knockdown.

Abstract
Mutations in the STK11 (LKB1) gene regulate resistance to PD-1/PD-L1 blockade. This study evaluated this association in patients with nonsquamous non-small cell lung cancer (NSCLC) enrolled in three phase I/II trials. STK11 mutations were associated with resistance to the anti-PD-L1 antibody durvalumab (alone/with the anti-CTLA4 antibody tremelimumab) independently of KRAS mutational status, highlighting STK11 as a potential driver of resistance to checkpoint blockade. Retrospective assessments of tumor tissue, whole blood, and serum revealed a unique immune phenotype in patients with STK11 mutations, with increased expression of markers associated with neutrophils (i.e., CXCL2, IL6), Th17 contexture (i.e., IL17A), and immune checkpoints. Associated changes were observed in the periphery. Reduction of STAT3 in the tumor microenvironment using an antisense oligonucleotide reversed immunotherapy resistance in preclinical STK11 knockout models. These results suggest that STK11 mutations may hinder response to checkpoint blockade through mechanisms including suppressive myeloid cell biology, which could be reversed by STAT3-targeted therapy. SIGNIFICANCE: Patients with nonsquamous STK11-mutant (STK11mut) NSCLC are less likely than STK11 wild-type (STK11wt) patients to respond to anti-PD-L1 ± anti-CTLA4 immunotherapies, and their tumors show increased expression of genes and cytokines that activate STAT3 signaling. Preclinically, STAT3 modulation reverses this resistance, suggesting STAT3-targeted agents as potential combination partners for immunotherapies in STK11mut NSCLC.This article is highlighted in the In This Issue feature, p. 2659.
AuthorsNabendu Pore, Song Wu, Nathan Standifer, Maria Jure-Kunkel, Melissa de Los Reyes, Yashaswi Shrestha, Rebecca Halpin, Raymond Rothstein, Kathy Mulgrew, Stephen Blackmore, Philip Martin, John Meekin 3rd, Matthew Griffin, Ina Bisha, Theresa A Proia, Ricardo J Miragaia, Ronald Herbst, Ashok Gupta, Shaad E Abdullah, Rajiv Raja, Melanie M Frigault, J Carl Barrett, Phillip A Dennis, Maria Libera Ascierto, Michael D Oberst
JournalCancer discovery (Cancer Discov) Vol. 11 Issue 11 Pg. 2828-2845 (11 2021) ISSN: 2159-8290 [Electronic] United States
PMID34230008 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright©2021 The Authors; Published by the American Association for Cancer Research.
Chemical References
  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • B7-H1 Antigen
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • durvalumab
  • Protein Serine-Threonine Kinases
  • STK11 protein, human
  • AMP-Activated Protein Kinase Kinases
  • tremelimumab
Topics
  • AMP-Activated Protein Kinase Kinases
  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • B7-H1 Antigen (metabolism)
  • Carcinoma, Non-Small-Cell Lung (drug therapy, genetics, pathology)
  • Humans
  • Lung Neoplasms (drug therapy, genetics, pathology)
  • Mutation
  • Protein Serine-Threonine Kinases (genetics)
  • Retrospective Studies
  • STAT3 Transcription Factor (genetics, metabolism)
  • Tumor Microenvironment

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: