HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Impact of Th-17 Cytokines on the Regulation of Transporters in Human Placental Explants.

Abstract
Activated T helper 17 (Th-17) cytokines play a role in the pathophysiology of autoimmune and infectious diseases. While these diseases affect many women of childbearing age, little is known about the effect of these cytokines on placental transporters. As several pro-inflammatory cytokines impact the expression of ABC and SLC placental transporters, we hypothesized that these transporters may be similarly altered by elevated levels of circulating Th-17 cytokines. Cultured term human villous explants were treated with IL-17A, IL-22, or IL-23, alone or in combination. Samples were analyzed using qRT-PCR and Western blotting. The mRNA expression of OATP2B1 was significantly downregulated in explants by all individual cytokines and combination treatments, while decreased protein expression was seen with IL-23 and combination (p < 0.01). Combination treatment decreased the mRNA expression of BCRP and OAT4 but increased that of OCT3 (p < 0.01). Decreased accumulation of the OATP substrate, cascade blue, was seen in IL-23-treated choriocarcinoma JAr cells (p < 0.01). Elevated Th-17 cytokines, which are seen in infectious and autoimmune diseases, affect the expression and activity of OATP2B1, as well as mRNA expression of placental BCRP, OAT4, and OCT3. This dysregulation could impact the fetal exposure to endogenous and exogenous substrates.
AuthorsKamelia Mirdamadi, Jacinda Kwok, Ori Nevo, Howard Berger, Micheline Piquette-Miller
JournalPharmaceutics (Pharmaceutics) Vol. 13 Issue 6 (Jun 15 2021) ISSN: 1999-4923 [Print] Switzerland
PMID34203644 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: