HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The unique molecular mechanism of diabetic nephropathy: a bioinformatics analysis of over 250 microarray datasets.

AbstractBACKGROUND/AIMS:
Diabetic nephropathy (DN) is one of the main causes of end-stage kidney disease worldwide. Emerging studies have suggested that its pathogenesis is distinct from nondiabetic renal diseases in many aspects. However, it still lacks a comprehensive understanding of the unique molecular mechanism of DN.
METHODS:
A total of 255 Affymetrix U133 microarray datasets (Affymetrix, Santa Calra, CA, USA) of human glomerular and tubulointerstitial tissues were collected. The 22 215 Affymetrix identifiers shared by the Human Genome U133 Plus 2.0 and U133A Array were extracted to facilitate dataset pooling. Next, a linear model was constructed and the empirical Bayes method was used to select the differentially expressed genes (DEGs) of each kidney disease. Based on these DEG sets, the unique DEGs of DN were identified and further analyzed using gene ontology and pathway enrichment analysis. Finally, the protein-protein interaction networks (PINs) were constructed and hub genes were selected to further refine the results.
RESULTS:
A total of 129 and 1251 unique DEGs were identified in the diabetic glomerulus (upregulated n = 83 and downregulated n = 203) and the diabetic tubulointerstitium (upregulated n = 399 and downregulated n = 874), respectively. Enrichment analysis revealed that the DEGs in the diabetic glomerulus were significantly associated with the extracellular matrix, cell growth, regulation of blood coagulation, cholesterol homeostasis, intrinsic apoptotic signaling pathway and renal filtration cell differentiation. In the diabetic tubulointerstitium, the significantly enriched biological processes and pathways included metabolism, the advanced glycation end products-receptor for advanced glycation end products signaling pathway in diabetic complications, the epidermal growth factor receptor (EGFR) signaling pathway, the FoxO signaling pathway, autophagy and ferroptosis. By constructing PINs, several nodes, such as AGR2, CSNK2A1, EGFR and HSPD1, were identified as hub genes, which might play key roles in regulating the development of DN.
CONCLUSIONS:
Our study not only reveals the unique molecular mechanism of DN but also provides a valuable resource for biomarker and therapeutic target discovery. Some of our findings are promising and should be explored in future work.
AuthorsLe-Ting Zhou, Zhi-Jian Zhang, Jing-Yuan Cao, Hanzhi Chen, Yu-Shan Zhu, Xi Wu, Abdul Qadir Nawabi, Xiaobin Liu, Weiwei Shan, Yue Zhang, Xi-Ran Zhang, Jing Xue, Ling Hu, Si-Si Wang, Liang Wang, Zhu-Xing Sun
JournalClinical kidney journal (Clin Kidney J) Vol. 14 Issue 6 Pg. 1626-1638 (Jun 2021) ISSN: 2048-8505 [Print] England
PMID34084458 (Publication Type: Journal Article)
Copyright© The Author(s) 2021. Published by Oxford University Press on behalf of ERA-EDTA.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: