HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Conformational Constraint between Aromatic Residue Side Chains in the "Message" Sequence of the Peptide Arodyn Using Ring Closing Metathesis Results in a Potent and Selective Kappa Opioid Receptor Antagonist.

Abstract
Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and mood disorders. The linear acetylated dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,d-Ala8]dynorphin A-(1-11)NH2), synthesized in our laboratory, demonstrated potent and selective KOR antagonism. Cyclization of arodyn could potentially stabilize the bioactive conformation and enhance its metabolic stability. The cyclization strategy employed involved ring closing metathesis between adjacent meta- or para-substituted Tyr(allyl) residues in the "message" sequence that were predicted in a docking study to yield analogs that would bind to the KOR with binding poses similar to arodyn. Consistent with the modeling, the resulting analogs retained KOR affinity similar to arodyn; the peptides involving cyclization between para O-allyl groups also retained high KOR selectivity, with one analog exhibiting KOR antagonist potency (KB = 15 nM) similar to arodyn. These promising cyclized analogs with constrained aromatic residues represent novel leads for further exploration of KOR pharmacology.
AuthorsSolomon A Gisemba, Michael J Ferracane, Thomas F Murray, Jane V Aldrich
JournalJournal of medicinal chemistry (J Med Chem) Vol. 64 Issue 6 Pg. 3153-3164 (03 25 2021) ISSN: 1520-4804 [Electronic] United States
PMID33688737 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Peptides, Cyclic
  • Receptors, Opioid, kappa
  • arodyn
  • Dynorphins
Topics
  • Cyclization
  • Dynorphins (chemical synthesis, chemistry, pharmacology)
  • Humans
  • Models, Molecular
  • Peptides, Cyclic (chemical synthesis, chemistry, pharmacology)
  • Receptors, Opioid, kappa (antagonists & inhibitors, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: