HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The Na+, K+-ATPase β1 subunit regulates epithelial tight junctions via MRCKα.

Abstract
An intact lung epithelial barrier is essential for lung homeostasis. The Na+, K+-ATPase (NKA), primarily serving as an ion transporter, also regulates epithelial barrier function via modulation of tight junctions. However, the underlying mechanism is not well understood. Here, we show that overexpression of the NKA β1 subunit upregulates the expression of tight junction proteins, leading to increased alveolar epithelial barrier function by an ion transport-independent mechanism. Using IP and mass spectrometry, we identified a number of unknown protein interactions of the β1 subunit, including a top candidate, myotonic dystrophy kinase-related cdc42-binding kinase α (MRCKα), which is a protein kinase known to regulate peripheral actin formation. Using a doxycycline-inducible gene expression system, we demonstrated that MRCKα and its downstream activation of myosin light chain is required for the regulation of alveolar barrier function by the NKA β1 subunit. Importantly, MRCKα is expressed in both human airways and alveoli and has reduced expression in patients with acute respiratory distress syndrome (ARDS), a lung illness that can be caused by multiple direct and indirect insults, including the infection of influenza virus and SARS-CoV-2. Our results have elucidated a potentially novel mechanism by which NKA regulates epithelial tight junctions and have identified potential drug targets for treating ARDS and other pulmonary diseases that are caused by barrier dysfunction.
AuthorsHaiqing Bai, Rui Zhou, Michael Barravecchia, Rosemary Norman, Alan Friedman, Deborah Yu, Xin Lin, Jennifer L Young, David A Dean
JournalJCI insight (JCI Insight) Vol. 6 Issue 4 (02 22 2021) ISSN: 2379-3708 [Electronic] United States
PMID33507884 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • ATP1B1 protein, human
  • Recombinant Proteins
  • CDC42BPA protein, human
  • Myotonin-Protein Kinase
  • Sodium-Potassium-Exchanging ATPase
Topics
  • Alveolar Epithelial Cells (cytology, metabolism)
  • Animals
  • HEK293 Cells
  • Humans
  • Myotonin-Protein Kinase (genetics, metabolism)
  • Primary Cell Culture
  • Rats
  • Recombinant Proteins (genetics, metabolism)
  • Respiratory Distress Syndrome (pathology, virology)
  • SARS-CoV-2 (pathogenicity)
  • Sodium-Potassium-Exchanging ATPase (genetics, metabolism)
  • Tight Junctions (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: